Question Number 28427 by abdo imad last updated on 25/Jan/18
$${find}\:\int\int_{{D}} \sqrt{\mathrm{2}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }\:\:{dxdy}\:\:{with} \\ $$$${D}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:\leqslant\sqrt{\mathrm{2}}\:\right\} \\ $$
Commented by abdo imad last updated on 27/Jan/18
$${let}\:{put}\:{I}=\:\int\int_{{D}} \sqrt{\mathrm{2}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }\:\:{let}\:{use}\:{the}\:{ch}.\:{x}={rcos}\theta\:{and} \\ $$$${y}={rsin}\theta\:\:\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\sqrt{\mathrm{2}}\:\:\Rightarrow\:\mathrm{0}<\:{r}^{\mathrm{2}} \leqslant\sqrt{\mathrm{2}}\Rightarrow\:\mathrm{0}<{r}\leqslant\:^{\mathrm{4}} \sqrt{\mathrm{2}} \\ $$$${I}=\:\int\int_{\mathrm{0}<{r}\leqslant\:^{\mathrm{4}} \sqrt{\mathrm{2}}\:\:{and}\:\:\mathrm{0}\leqslant\theta\leqslant\mathrm{2}\pi} \sqrt{\mathrm{2}−{r}^{\mathrm{2}} \:}\:{rdrd}\theta \\ $$$${I}=\:\left(\int_{\mathrm{0}} ^{\mathrm{4}_{\sqrt{\mathrm{2}}} } \:\:{r}\sqrt{\mathrm{2}−{r}^{\mathrm{2}} }\:{dr}\right)\:\left(\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \theta\right)\:=\mathrm{2}\pi\:\int_{\mathrm{0}} ^{\mathrm{4}_{\sqrt{\mathrm{2}}} } \:\:{r}\sqrt{\mathrm{2}−{r}^{\mathrm{2}} }\:{dr} \\ $$$$=−\frac{\mathrm{2}\pi}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{4}_{\sqrt{\mathrm{2}}} } \:\mathrm{3}\:\left(−{r}\right)\left(\mathrm{2}−{r}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dr}\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$=−\frac{\mathrm{2}\pi}{\mathrm{3}}\:\left[\:\left(\mathrm{2}−{r}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\mathrm{4}_{\sqrt{\mathrm{2}}} } \:=\:\frac{−\mathrm{2}\pi}{\mathrm{3}}\left(\left(\mathrm{2}\:−\left(^{\mathrm{4}} \sqrt{\left.\mathrm{2}\right)}\:\right)^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:−\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{2}}} \right) \\ $$$$=\frac{−\mathrm{2}\pi}{\mathrm{3}}\:\left(\:\left(\mathrm{2}−\sqrt{\left.\mathrm{2}\right)}\:^{\frac{\mathrm{3}}{\mathrm{2}}} \:−\mathrm{2}\sqrt{\mathrm{2}}\right)\right. \\ $$$$=\:\frac{−\mathrm{2}\pi}{\mathrm{3}}\left(\:\left(\mathrm{2}−\sqrt{\left.\mathrm{2}\right)}\:\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}\:\:−\mathrm{2}\sqrt{\mathrm{2}}\right)\right)\:\:. \\ $$
Answered by ajfour last updated on 27/Jan/18
$${I}=\int_{\mathrm{0}} ^{\:\:\mathrm{2}\pi} \left[\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\:\sqrt{\mathrm{2}}} \sqrt{\mathrm{2}−\left({r}^{\mathrm{2}} \right)}\:{d}\left({r}^{\mathrm{2}} \right)\right]{d}\theta \\ $$$$=\left[\frac{\mathrm{2}\pi\left(\mathrm{2}−{r}^{\mathrm{2}} \right)\sqrt{\mathrm{2}−{r}^{\mathrm{2}} }}{\mathrm{3}}\right]\mid_{{r}^{\mathrm{2}} =\sqrt{\mathrm{2}}} ^{\mathrm{0}} \\ $$$${I}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}}\left[\mathrm{2}\sqrt{\mathrm{2}}−\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}\:\right]\:. \\ $$