Menu Close

find-d-4-y-dx-4-d-3-y-dx-3-7-d-2-y-dx-2-dy-dx-6y-0-for-y-0-1-y-0-0-y-0-2-y-0-1-




Question Number 125693 by fajri last updated on 13/Dec/20
find :    (d^4 y/dx^4 ) + (d^3 y/dx^3 ) − 7 (d^2 y/dx^2 ) − (dy/(dx  )) + 6y = 0    for y(0) = 1, y′(0) = 0, y′′(0) = −2 , y′′′(0) = −1
$${find}\:: \\ $$$$ \\ $$$$\frac{{d}^{\mathrm{4}} {y}}{{dx}^{\mathrm{4}} }\:+\:\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }\:−\:\mathrm{7}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:−\:\frac{{dy}}{{dx}\:\:}\:+\:\mathrm{6}{y}\:=\:\mathrm{0} \\ $$$$ \\ $$$${for}\:{y}\left(\mathrm{0}\right)\:=\:\mathrm{1},\:{y}'\left(\mathrm{0}\right)\:=\:\mathrm{0},\:{y}''\left(\mathrm{0}\right)\:=\:−\mathrm{2}\:,\:{y}'''\left(\mathrm{0}\right)\:=\:−\mathrm{1} \\ $$
Answered by bobhans last updated on 13/Dec/20
characteristic eq   r^4 +r^3 −7r^2 −r+6=0  (r−1)(r^3 +2r^2 −5r−6)=0  (r−1)(r+1)(r^2 +r−6)=0  (r−1)(r+1)(r−2)(r+3)=0  General solution  y_h = Ae^x +Be^(−x) +Ce^(2x) +De^(−3x)   we can find A,B,C and D
$${characteristic}\:{eq}\: \\ $$$${r}^{\mathrm{4}} +{r}^{\mathrm{3}} −\mathrm{7}{r}^{\mathrm{2}} −{r}+\mathrm{6}=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}^{\mathrm{3}} +\mathrm{2}{r}^{\mathrm{2}} −\mathrm{5}{r}−\mathrm{6}\right)=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}+\mathrm{1}\right)\left({r}^{\mathrm{2}} +{r}−\mathrm{6}\right)=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}+\mathrm{1}\right)\left({r}−\mathrm{2}\right)\left({r}+\mathrm{3}\right)=\mathrm{0} \\ $$$${General}\:{solution} \\ $$$${y}_{{h}} =\:{Ae}^{{x}} +{Be}^{−{x}} +{Ce}^{\mathrm{2}{x}} +{De}^{−\mathrm{3}{x}} \\ $$$${we}\:{can}\:{find}\:{A},{B},{C}\:{and}\:{D} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *