Menu Close

find-D-e-y-sin-2xy-dxdy-with-D-0-1-0-then-find-the-value-of-0-sin-2-t-t-e-t-dt-




Question Number 29027 by abdo imad last updated on 03/Feb/18
find ∫∫_D  e^(−y) sin(2xy)dxdy with D=[0,1]×[0,+∞[  then find the value of  ∫_0 ^∞  ((sin^2 t)/t) e^(−t) dt  .
$${find}\:\int\int_{{D}} \:{e}^{−{y}} {sin}\left(\mathrm{2}{xy}\right){dxdy}\:{with}\:{D}=\left[\mathrm{0},\mathrm{1}\right]×\left[\mathrm{0},+\infty\left[\right.\right. \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}^{\mathrm{2}} {t}}{{t}}\:{e}^{−{t}} {dt}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *