find-D-x-2-y-2-dxdxy-with-D-x-y-z-R-3-x-2-y-2-z-2-1-and-z-0- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 27598 by abdo imad last updated on 10/Jan/18 find∫∫∫D(x2+y2)dxdxywithD={x,y,z)∈R3/x2+y2+z2⩽1andz⩾0} Commented by abdo imad last updated on 21/Jan/18 wehavez2⩽1−(x2+y2)⩽1andz⩾0⇒0⩽z⩽1soI=∫∫∫(x2+y2+z2)dxdydz=∫01(∫∫W(x2+y2)dxdy)dzwithW={(x,y)∈R2/x2+y2⩽1−z2andz⩾0}letdefineadiffeomorphismeonWweusethepolarcoordinatex=rcosθandy=rsinθwemusthave0<r⩽1−z2and0⩽θ⩽2π∫∫W(x2+y2)dxdy=∫∫0<r⩽1−z2and0⩽θ⩽2πr2rdrdθ=2π∫01−z2r3dr=π2[r4]01−z2=π2(1−z2)2=π2(z4−2z2+1)andI=π2∫01(z4−2z2+1)dz=π2[z55−23z3+z]01=π2(15−23+1)=π2(15+13)=8π30=4π15. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-R-f-x-f-x-prove-f-x-y-f-x-f-y-Next Next post: find-0-pi-t-2-sint-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.