Menu Close

find-D-x-2-y-2-dxdxy-with-D-x-y-z-R-3-x-2-y-2-z-2-1-and-z-0-




Question Number 27598 by abdo imad last updated on 10/Jan/18
find ∫∫∫_D (x^2 +y^2 )dxdxy   with  D={x,y,z)∈R^3    /x^2  +y^2 +z^2  ≤1  and z≥0 }
findD(x2+y2)dxdxywithD={x,y,z)R3/x2+y2+z21andz0}
Commented by abdo imad last updated on 21/Jan/18
we have z^2 ≤ 1−(x^2 +y^2 ) ≤1 and z≥0 ⇒   0≤z≤1 so  I= ∫∫∫ (x^2 +y^2  +z^2 )dxdydz = ∫_0 ^1   (∫∫_W (x^2 +y^2 )dxdy)dz  with W ={ (x,y)∈R^2  / x^2 +y^2  ≤1−z^2   and z≥0} let define  a diffeomorphisme on W we use the polar coordinate  x=r cosθ  and y =rsinθ  we must have  0<r ≤(√(1−z^2 ))  and 0≤θ≤2π  ∫∫_W ( x^2 +y^2 )dxdy= ∫∫_(0<r≤(√(1−z^2  ))  and 0≤θ≤2π) r^2 rdrdθ  = 2π ∫_0 ^(√(1−z^2 ))    r^3 dr  = (π/2) [ r^4 ]_0 ^(√(1−z^2 ))   = (π/2)(1−z^2 )^2   = (π/2)( z^4  −2z^2 +1) and  I= (π/2) ∫_0 ^1  (z^4  −2z^2 +1)dz =(π/2) [  (z^5 /5) −(2/3) z^3  +z]_0 ^1   = (π/2) ( (1/5) −(2/3) +1) = (π/2)( (1/5) +(1/3)) = ((8π)/(30)) = ((4π)/(15)) .
wehavez21(x2+y2)1andz00z1soI=(x2+y2+z2)dxdydz=01(W(x2+y2)dxdy)dzwithW={(x,y)R2/x2+y21z2andz0}letdefineadiffeomorphismeonWweusethepolarcoordinatex=rcosθandy=rsinθwemusthave0<r1z2and0θ2πW(x2+y2)dxdy=0<r1z2and0θ2πr2rdrdθ=2π01z2r3dr=π2[r4]01z2=π2(1z2)2=π2(z42z2+1)andI=π201(z42z2+1)dz=π2[z5523z3+z]01=π2(1523+1)=π2(15+13)=8π30=4π15.

Leave a Reply

Your email address will not be published. Required fields are marked *