Menu Close

find-D-x-y-2-e-x-2-y-2-dxdy-with-D-x-y-R-2-0-lt-x-lt-1-and-0-lt-y-lt-1-x-




Question Number 27185 by abdo imad last updated on 02/Jan/18
find  ∫∫_D (x+y)^2  e^(x^2 −y^2 ) dxdy with  D={(x,y)∈R^(2 ) /0<x<1 and 0<y<1−x }.
$${find}\:\:\int\int_{{D}} \left({x}+{y}\right)^{\mathrm{2}} \:{e}^{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } {dxdy}\:{with} \\ $$$${D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}\:} /\mathrm{0}<{x}<\mathrm{1}\:{and}\:\mathrm{0}<{y}<\mathrm{1}−{x}\:\right\}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *