Question Number 28160 by abdo imad last updated on 21/Jan/18
$${find}\:\int\int_{{D}} \:\:\sqrt{{xy}}\:{dxdy}\:{with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{} \:/\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} \leqslant{xy}\right\} \\ $$
Commented by abdo imad last updated on 26/Jan/18
$${let}\:{put}\:\:{I}=\:\int\int_{{D}} \sqrt{{xy}}\:{dxdy}\:\:\:{let}\:{use}\:{he}\:{ch}.\:{x}={rcos}\theta\:{and} \\ $$$${y}=\:{rsin}\theta\:\:\Rightarrow\:\mathrm{0}<{r}^{\mathrm{4}} <\:{r}^{\mathrm{2}} {cos}\theta\:{sin}\theta\:\Rightarrow\mathrm{0}\:<{r}^{\mathrm{2}} <\:\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}\theta\right) \\ $$$${so}\:{we}\:{must}\:{have}\:{sin}\left(\mathrm{2}\theta\right)\:>\mathrm{0}\:\Rightarrow\:\:\mathrm{0}<\theta<\:\frac{\pi}{\mathrm{2}}\:{and} \\ $$$$\mathrm{0}<{r}<\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{sin}\left(\mathrm{2}\theta\right)}\: \\ $$$${I}\:=\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{sin}\left(\mathrm{2}\theta\right)}} \sqrt{{r}^{\mathrm{2}} {sin}\theta\:{cos}\theta}\:{rdr}\right){d}\theta \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{sin}\left(\mathrm{2}\theta\right)}} \:{r}^{\mathrm{2}} {dr}\right)\sqrt{{sin}\left(\mathrm{2}\theta\right)}\:{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\:{r}^{\mathrm{3}} \right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{sin}\left(\mathrm{2}\theta\right)}} \sqrt{{sin}\left(\mathrm{2}\theta\right)}{d}\theta \\ $$$$\left.\:=\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}}{\mathrm{2}}\:{sin}\left(\mathrm{2}\theta\right)\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{sin}\left(\mathrm{2}\theta\right)}\:\right)\sqrt{{sin}\left(\mathrm{2}\theta\right)}\right){d}\theta \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{12}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{2}} \left(\mathrm{2}\theta\right){d}\theta=\frac{\mathrm{1}}{\mathrm{12}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}−{cos}\left(\mathrm{4}\theta\right)}{\mathrm{2}}{d}\theta \\ $$
Commented by abdo imad last updated on 26/Jan/18
$${I}=\:\frac{\pi}{\mathrm{48}}\:−\frac{\mathrm{1}}{\mathrm{24}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{4}\theta\right){d}\theta=\:\frac{\pi}{\mathrm{48}}\:\:−\:\frac{\mathrm{1}}{\mathrm{4}×\mathrm{24}}\left[{sin}\left(\mathrm{4}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\frac{\pi}{\mathrm{48}}\:−\mathrm{0} \\ $$$$\Rightarrow\:\:{I}=\:\frac{\pi}{\mathrm{48}}\:. \\ $$