Menu Close

find-D-xy-x-2-y-2-dxdy-with-D-x-y-R-2-x-2-2y-2-1-x-0-y-0-




Question Number 27595 by abdo imad last updated on 10/Jan/18
find  ∫∫_D   xy(√( x^2 +y^2 ))  dxdy   with  D={ (x,y)∈R^2 / x^2  +2y^2  ≤1  ,x≥0 ,y ≥0}
findDxyx2+y2dxdywithD={(x,y)R2/x2+2y21,x0,y0}
Commented by abdo imad last updated on 15/Jan/18
we use the polar coordinate let use the ch.x=rcosθ  and y= (1/( (√2))) sinθ   due to the diffeomorphisme we must have   0≤θ≤ (π/2) and  0≤r≤1  I=∫∫_D xy(√(x^2 +2y^2 )) dxdy= ∫∫_w  Φof/j_Φ  /dr dθ  (r,θ)−(f_1 (r,θ) ,f_2 (r,θ))=(x y ) =(rcosθ ,(r/( (√2))) sinθ)  M_j =   (_((1/( (√2)))sinθ) ^(cosθ)     _((r/( (√2)))cosθ)^(−rsinθ)  )  I=∫∫_(0≤r≤1 and 0≤θ≤(π/2))    rcosθ.(r/( (√2))) sinθ r .(r/( (√2))) drdθ  I= (1/2)∫_0^  ^1  r^4   ∫_0 ^(π/(2 ))  cosθ sinθ dθ = (1/4) [(1/5) r^5 ]_0 ^1  ∫_0 ^(π/2)  sin(2θ)dθ  = (1/(40)) [−cos(2θ)]_0 ^(π/2) =  (1/(20)) .
weusethepolarcoordinateletusethech.x=rcosθandy=12sinθduetothediffeomorphismewemusthave0θπ2and0r1I=Dxyx2+2y2dxdy=wΦof/jΦ/drdθ(r,θ)(f1(r,θ),f2(r,θ))=(xy)=(rcosθ,r2sinθ)Mj=(12sinθcosθr2cosθrsinθ)I=0r1and0θπ2rcosθ.r2sinθr.r2drdθI=1201r40π2cosθsinθdθ=14[15r5]010π2sin(2θ)dθ=140[cos(2θ)]0π2=120.

Leave a Reply

Your email address will not be published. Required fields are marked *