find-D-xy-x-2-y-2-dxdy-with-D-x-y-R-2-x-2-2y-2-1-x-0-y-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 27595 by abdo imad last updated on 10/Jan/18 find∫∫Dxyx2+y2dxdywithD={(x,y)∈R2/x2+2y2⩽1,x⩾0,y⩾0} Commented by abdo imad last updated on 15/Jan/18 weusethepolarcoordinateletusethech.x=rcosθandy=12sinθduetothediffeomorphismewemusthave0⩽θ⩽π2and0⩽r⩽1I=∫∫Dxyx2+2y2dxdy=∫∫wΦof/jΦ/drdθ(r,θ)−(f1(r,θ),f2(r,θ))=(xy)=(rcosθ,r2sinθ)Mj=(12sinθcosθr2cosθ−rsinθ)I=∫∫0⩽r⩽1and0⩽θ⩽π2rcosθ.r2sinθr.r2drdθI=12∫01r4∫0π2cosθsinθdθ=14[15r5]01∫0π2sin(2θ)dθ=140[−cos(2θ)]0π2=120. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-158664Next Next post: find-cos-2x-cosx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.