Question Number 118090 by bemath last updated on 15/Oct/20

Commented by bemath last updated on 15/Oct/20

Answered by MJS_new last updated on 15/Oct/20

Answered by som(math1967) last updated on 15/Oct/20
![(1/(abc)) determinant (((a^2 +b^2 ),c^2 ,c^2 ),(a^2 ,(b^2 +c^2 ),a^2 ),(b^2 ,b^2 ,(c^2 +a^2 ))) R_1 →R_1 −R_2 −R_3 (1/(abc)) determinant ((0,(−2b^2 ),(−2a^2 )),(a^2 ,(b^2 +c^2 ),a^2 ),(b^(2 ) ,b^2 ,(c^2 +a^2 ))) ((−2)/(abc)) determinant ((0,b^2 ,a^2 ),(a^2 ,(b^2 +c^2 ),a^2 ),(b^(2 ) ,b^2 ,(c^2 +a^2 ))) R_2 →R_2 −R_1 ,R_3 →R_3 −R_1 ((−2)/(abc)) determinant ((0,b^2 ,a^2 ),(a^2 ,c^2 ,0),(b^2 ,0,c^2 )) ((−2)/(abc))[0−b^2 (a^2 c^2 −0)+a^2 (0−b^2 c^2 )] ((−2×−2a^2 b^2 c^2 )/(abc))=4abc ans](https://www.tinkutara.com/question/Q118103.png)
Answered by FelipeLz last updated on 15/Oct/20
![((a^2 +b^2 )/c)[((a^2 b^2 +a^2 c^2 +b^2 c^2 +c^4 )/(ab))−ab]−c[((a^3 +ac^2 )/b)−ab]+c[ab−((b^3 −bc^2 )/a)] ((a^2 +b^2 )/c)[((a^2 b^2 +a^2 c^2 +b^2 c^2 +c^4 )/(ab))−ab]((ab)/(ab))+c[2ab−((b^3 +bc^2 )/a)−((a^3 +ac^2 )/b)]((ab)/(ab)) (((a^2 +b^2 )c)/(ab))[a^2 +b^2 +c^2 ]+(c/(ab))[2a^2 b^2 −b^4 −b^2 c^2 −a^4 −a^2 c^2 ] (c/(ab))[(a^2 +b^2 )(a^2 +b^2 +c^2 )−(a^2 −b^2 )^2 −c^2 (a^2 +b^2 )] (c/(ab))[(a^2 +b^2 )(a^2 +b^2 )−(a^2 −b^2 )^2 ] (c/(ab))[a^4 +2a^2 b^2 +b^4 −a^4 +2a^2 b^2 −b^4 ] ((4a^2 b^2 c)/(ab)) = 4abc](https://www.tinkutara.com/question/Q118107.png)
Answered by 1549442205PVT last updated on 15/Oct/20
![By rule to calculate value of a determinant of degree 3 we have: Δ=(((a^2 +b^2 )(b^2 +c^2 )(c^2 +a^2 ))/(abc))+2abc −((bc(b^2 +c^2 ))/a)−((ac(a^2 +c^2 ))/b)−((ab(a^2 +b^2 ))/c) =(1/(abc))[(a^2 +b^2 )(b^2 +c^2 )(c^2 +a^2 ) −b^2 c^2 (b^2 +c^2 )−(ca)^2 (c^2 +a^2 ) −(ab)^2 (a^2 +b^2 )]+2abc (1/(abc))[a^4 (b^2 +c^2 )+b^4 (c^2 +a^2 )+c^4 (a^2 +b^2 ) +2a^2 b^2 c^2 −b^4 (c^2 +a^2 )−c^4 (a^2 +b^2 ) −a^4 (b^2 +c^2 )]+2abc =(1/(abc)).2(abc)^2 +2abc=4abc](https://www.tinkutara.com/question/Q118112.png)