Menu Close

find-determinant-a-2-b-2-c-c-c-a-b-2-c-2-a-a-b-b-a-2-c-2-b-




Question Number 118090 by bemath last updated on 15/Oct/20
find  determinant (((((a^2 +b^2 )/c)        c               c)),((     a           ((b^2 +c^2 )/a)       a)),((     b              b        ((a^2 +c^2 )/b))))=?
find|a2+b2cccab2+c2aabba2+c2b|=?
Commented by bemath last updated on 15/Oct/20
yes..thank you all
yes..thankyouall
Answered by MJS_new last updated on 15/Oct/20
just calculate it?!  =4abc
justcalculateit?!=4abc
Answered by som(math1967) last updated on 15/Oct/20
(1/(abc)) determinant (((a^2 +b^2 ),c^2 ,c^2 ),(a^2 ,(b^2 +c^2 ),a^2 ),(b^2 ,b^2 ,(c^2 +a^2 )))  R_1 →R_1 −R_2 −R_3   (1/(abc)) determinant ((0,(−2b^2 ),(−2a^2 )),(a^2 ,(b^2 +c^2 ),a^2 ),(b^(2 ) ,b^2 ,(c^2 +a^2 )))  ((−2)/(abc)) determinant ((0,b^2 ,a^2 ),(a^2 ,(b^2 +c^2 ),a^2 ),(b^(2 ) ,b^2 ,(c^2 +a^2 )))  R_2 →R_2 −R_1 ,R_3 →R_3 −R_1   ((−2)/(abc)) determinant ((0,b^2 ,a^2 ),(a^2 ,c^2 ,0),(b^2 ,0,c^2 ))  ((−2)/(abc))[0−b^2 (a^2 c^2 −0)+a^2 (0−b^2 c^2 )]  ((−2×−2a^2 b^2 c^2 )/(abc))=4abc ans
1abc|a2+b2c2c2a2b2+c2a2b2b2c2+a2|R1R1R2R31abc|02b22a2a2b2+c2a2b2b2c2+a2|2abc|0b2a2a2b2+c2a2b2b2c2+a2|R2R2R1,R3R3R12abc|0b2a2a2c20b20c2|2abc[0b2(a2c20)+a2(0b2c2)]2×2a2b2c2abc=4abcans
Answered by FelipeLz last updated on 15/Oct/20
((a^2 +b^2 )/c)[((a^2 b^2 +a^2 c^2 +b^2 c^2 +c^4 )/(ab))−ab]−c[((a^3 +ac^2 )/b)−ab]+c[ab−((b^3 −bc^2 )/a)]  ((a^2 +b^2 )/c)[((a^2 b^2 +a^2 c^2 +b^2 c^2 +c^4 )/(ab))−ab]((ab)/(ab))+c[2ab−((b^3 +bc^2 )/a)−((a^3 +ac^2 )/b)]((ab)/(ab))  (((a^2 +b^2 )c)/(ab))[a^2 +b^2 +c^2 ]+(c/(ab))[2a^2 b^2 −b^4 −b^2 c^2 −a^4 −a^2 c^2 ]  (c/(ab))[(a^2 +b^2 )(a^2 +b^2 +c^2 )−(a^2 −b^2 )^2 −c^2 (a^2 +b^2 )]  (c/(ab))[(a^2 +b^2 )(a^2 +b^2 )−(a^2 −b^2 )^2 ]  (c/(ab))[a^4 +2a^2 b^2 +b^4 −a^4 +2a^2 b^2 −b^4 ]  ((4a^2 b^2 c)/(ab)) = 4abc
a2+b2c[a2b2+a2c2+b2c2+c4abab]c[a3+ac2bab]+c[abb3bc2a]a2+b2c[a2b2+a2c2+b2c2+c4abab]abab+c[2abb3+bc2aa3+ac2b]abab(a2+b2)cab[a2+b2+c2]+cab[2a2b2b4b2c2a4a2c2]cab[(a2+b2)(a2+b2+c2)(a2b2)2c2(a2+b2)]cab[(a2+b2)(a2+b2)(a2b2)2]cab[a4+2a2b2+b4a4+2a2b2b4]4a2b2cab=4abc
Answered by 1549442205PVT last updated on 15/Oct/20
By rule to calculate value of a    determinant of degree 3 we have:  Δ=(((a^2 +b^2 )(b^2 +c^2 )(c^2 +a^2 ))/(abc))+2abc  −((bc(b^2 +c^2 ))/a)−((ac(a^2 +c^2 ))/b)−((ab(a^2 +b^2 ))/c)  =(1/(abc))[(a^2 +b^2 )(b^2 +c^2 )(c^2 +a^2 )  −b^2 c^2 (b^2 +c^2 )−(ca)^2 (c^2 +a^2 )  −(ab)^2 (a^2 +b^2 )]+2abc  (1/(abc))[a^4 (b^2 +c^2 )+b^4 (c^2 +a^2 )+c^4 (a^2 +b^2 )  +2a^2 b^2 c^2 −b^4 (c^2 +a^2 )−c^4 (a^2 +b^2 )  −a^4 (b^2 +c^2 )]+2abc  =(1/(abc)).2(abc)^2 +2abc=4abc
Byruletocalculatevalueofadeterminantofdegree3wehave:Δ=(a2+b2)(b2+c2)(c2+a2)abc+2abcbc(b2+c2)aac(a2+c2)bab(a2+b2)c=1abc[(a2+b2)(b2+c2)(c2+a2)b2c2(b2+c2)(ca)2(c2+a2)(ab)2(a2+b2)]+2abc1abc[a4(b2+c2)+b4(c2+a2)+c4(a2+b2)+2a2b2c2b4(c2+a2)c4(a2+b2)a4(b2+c2)]+2abc=1abc.2(abc)2+2abc=4abc

Leave a Reply

Your email address will not be published. Required fields are marked *