Question Number 45259 by rahul 19 last updated on 11/Oct/18
$${Find}\:\:{distance}\:{of}\:{point}\:\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\:{from} \\ $$$${the}\:{line}\:{passing}\:{through}\:\left(\mathrm{2},\mathrm{3},\mathrm{4}\right)\:\& \\ $$$$\left(−\mathrm{1},\mathrm{2},\mathrm{3}\right)\:? \\ $$
Commented by rahul 19 last updated on 11/Oct/18
$${Another}\:{method}: \\ $$$${Let}\:{P}\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\:,\:{Q}\left(\mathrm{2},\mathrm{3},\mathrm{4}\right)\:,\:{R}\left(−\mathrm{1},\mathrm{2},\mathrm{3}\right) \\ $$$${and}\:{M}\:{be}\:{foot}\:{of}\:{perpendicular}… \\ $$$${Now}\:{in}\:\Delta{PQR}, \\ $$$${area}\:{of}\:\Delta=\:\frac{\mathrm{1}}{\mathrm{2}}\mid{PQ}×{QR}\mid=\frac{\mathrm{1}}{\mathrm{2}}\mid{PM}×{QR}\mid \\ $$$$\Rightarrow\:\mid\left({i}+\mathrm{2}{j}+\mathrm{3}{k}\right)×\left(\mathrm{3}{i}+{j}+{k}\right)\mid={PM}×\sqrt{\mathrm{11}} \\ $$$$\Rightarrow\:{PM}=\:\sqrt{\frac{\mathrm{90}}{\mathrm{11}}} \\ $$
Answered by ajfour last updated on 11/Oct/18