Menu Close

Find-distance-of-point-1-1-1-from-the-line-passing-through-2-3-4-amp-1-2-3-




Question Number 45259 by rahul 19 last updated on 11/Oct/18
Find  distance of point (1,1,1) from  the line passing through (2,3,4) &  (−1,2,3) ?
Finddistanceofpoint(1,1,1)fromthelinepassingthrough(2,3,4)&(1,2,3)?
Commented by rahul 19 last updated on 11/Oct/18
Another method:  Let P(1,1,1) , Q(2,3,4) , R(−1,2,3)  and M be foot of perpendicular...  Now in ΔPQR,  area of Δ= (1/2)∣PQ×QR∣=(1/2)∣PM×QR∣  ⇒ ∣(i+2j+3k)×(3i+j+k)∣=PM×(√(11))  ⇒ PM= (√((90)/(11)))
Anothermethod:LetP(1,1,1),Q(2,3,4),R(1,2,3)andMbefootofperpendicularNowinΔPQR,areaofΔ=12PQ×QR∣=12PM×QR(i+2j+3k)×(3i+j+k)∣=PM×11PM=9011
Answered by ajfour last updated on 11/Oct/18
let eq. of line be:   r^� =a^� +λb^�   b^�  = 3i^� +j^� +k^�    ;  ∣b^� ∣=(√(11))    d^� = (1/( (√(11)))) determinant ((i^� ,j^� ,k^� ),(1,2,3),(3,1,1))      = (1/( (√(11))))(−i^� +8j^� −5k^� )   ∣d^� ∣ = (√((90)/(11)))  .
leteq.oflinebe:r¯=a¯+λb¯b¯=3i^+j^+k^;b¯∣=11d¯=111|i^j^k^123311|=111(i^+8j^5k^)d¯=9011.
Commented by rahul 19 last updated on 11/Oct/18
Thank you sir ! ☺️��
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
eqnof st line pass ing through (2,3,4) and (−1,2,3)  is ((x−2)/(−1−2))=((y−3)/(2−3))=((z−4)/(3−4))=r  (−3r+2,−r+3,−r+4) point lies on st line and  assumed that it is the foot of perpendicular  drswn from (1,1,1) on the st line.  direction ratio between (1,1,1) and (−3r+2,−r+3,−r+4)  is (−3r+1,−r+2,−r+3)  now (−3r+1)×(−3)+(−r+2)×(−1)+(−r+3)×−1=0  9r−3+r−2+r−3=0  11r=8   r=(8/(11))  now distance bdtween (1,1,1) and(−3r+2,−r+3,−r+4)  (√((−3r+2−1)^2 +(−r+3−1)^2 +(−r+4−1)^2 ))   =(√(((−3r+1)^2 +(−r+2)^2 +(−r+3)^2 ))   =(√((((−24+11)/(11)))^2 +(((−8+22)/(11)))^2 +(((−8+33)/(11)))^2 ))  =(√(((169)/(121))+((196)/(121))+((625)/(121))))  =(√((990)/(121))) =(√((90)/(11)))
eqnofstlinepassingthrough(2,3,4)and(1,2,3)isx212=y323=z434=r(3r+2,r+3,r+4)pointliesonstlineandassumedthatitisthefootofperpendiculardrswnfrom(1,1,1)onthestline.directionratiobetween(1,1,1)and(3r+2,r+3,r+4)is(3r+1,r+2,r+3)now(3r+1)×(3)+(r+2)×(1)+(r+3)×1=09r3+r2+r3=011r=8r=811nowdistancebdtween(1,1,1)and(3r+2,r+3,r+4)(3r+21)2+(r+31)2+(r+41)2=((3r+1)2+(r+2)2+(r+3)2=(24+1111)2+(8+2211)2+(8+3311)2=169121+196121+625121=990121=9011
Commented by rahul 19 last updated on 11/Oct/18
thank you sir☺️��

Leave a Reply

Your email address will not be published. Required fields are marked *