Menu Close

Find-distinct-natural-numbers-from-1-to-9-such-that-these-six-equations-are-satisfied-simultaneously-1-a-bc-20-2-d-e-f-20-3-g-hi-20-4-adg-20-5-b-eh-20-6-c-f-i-1




Question Number 16701 by Tinkutara last updated on 25/Jun/17
Find distinct natural numbers from 1  to 9 such that these six equations are  satisfied simultaneously:  (1) a + bc = 20  (2) d + e + f = 20  (3) g − hi = −20  (4) adg = 20  (5) b + eh = 20  (6) c + f − i = 10
Finddistinctnaturalnumbersfrom1to9suchthatthesesixequationsaresatisfiedsimultaneously:(1)a+bc=20(2)d+e+f=20(3)ghi=20(4)adg=20(5)b+eh=20(6)c+fi=10
Answered by RasheedSoomro last updated on 26/Jun/17
{a,b,c,d,e,f,g,h,i}={1,2,3,4,5,6,7,8,9}  adg=20=1×4×5  [Only one way disregard to order]  ∴  {a,d,g}={1,4,5}........................(i)  ∴{b,c,e,f,h,i}={2,3,6,7,8,9}   { ((a=1⇒a+bc=20⇒bc=19 ≠(1≤x≤9)×(1≤y≤9), ∴a≠1)),((a=4⇒bc=16=2×8⇒{b,c}={2,8})),((a=5⇒bc=15=3×5 but b∣c≠5 because a=5)) :}  So, surely a=4 ∧ {b,c}={2,8}  ∴ {e,f,h,i}={3,6,7,9}   { ((g≠4 because a=4)),((g=1⇒hi−g=20⇒hi=21=3×7⇒{h,i}={3,7})),((g=5⇒hi=25=5×5 but {g,h,i}≠{5,5,5})) :}  So, surely g=1 ∧ {h,i}={3,7}  ∴ {e,f}={6,9}   { ((b=2⇒b+eh=20⇒eh=18=3×6 ⇒{e,h}={3,6})),((b=8⇒eh=12^• )) :}  ^• 12 can be 2×6 or 3×4 but these values are assigned to others  {a,d,g}={1,4,5},a=4,g=1⇒d=5   {: (({h,i}={3,7})),(({e,h}={3,6})),(({e,f}={6,9})) }⇒h=3,i=7,e=6,f=9  {b,c}={2,8}   { ((c+f−i=10⇒c+9−7=10⇒c=8)),(({b,c}={2,8}∧c=8⇒b=2)) :}  a=4,b=2,c=8,d=5,e=6,f=9,g=1,h=3,i=7
{a,b,c,d,e,f,g,h,i}={1,2,3,4,5,6,7,8,9}adg=20=1×4×5[Onlyonewaydisregardtoorder]{a,d,g}={1,4,5}(i){b,c,e,f,h,i}={2,3,6,7,8,9}{a=1a+bc=20bc=19(1x9)×(1y9),a1a=4bc=16=2×8{b,c}={2,8}a=5bc=15=3×5butbc5becausea=5So,surelya=4{b,c}={2,8}{e,f,h,i}={3,6,7,9}{g4becausea=4g=1hig=20hi=21=3×7{h,i}={3,7}g=5hi=25=5×5but{g,h,i}{5,5,5}So,surelyg=1{h,i}={3,7}{e,f}={6,9}{b=2b+eh=20eh=18=3×6{e,h}={3,6}b=8eh=1212canbe2×6or3×4butthesevaluesareassignedtoothers{a,d,g}={1,4,5},a=4,g=1d=5{h,i}={3,7}{e,h}={3,6}{e,f}={6,9}}h=3,i=7,e=6,f=9{b,c}={2,8}{c+fi=10c+97=10c=8{b,c}={2,8}c=8b=2a=4,b=2,c=8,d=5,e=6,f=9,g=1,h=3,i=7
Commented by Tinkutara last updated on 26/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *