Menu Close

Find-domain-and-range-of-the-function-f-x-x-2-6x-8-x-5-Also-draw-the-graph-




Question Number 36316 by ajfour last updated on 31/May/18
Find domain and range of the  function  f(x)=((x^2 −6x+8)/(x−5))  .  Also draw the graph.
Finddomainandrangeofthefunctionf(x)=x26x+8x5.Alsodrawthegraph.
Answered by tanmay.chaudhury50@gmail.com last updated on 31/May/18
y=((x^2 −6x+8)/(x−5))  x^2 −6x+8−xy+5y=0  x^2 +x(−6−y)+8+5y=0  discriminant  D=B^2 −4AC  =(6+y)^2 −4(8+5y)  =36+12y+y^2 −32−20y  =y^2 −8y+4  =y^2 −2.y.4+(4)^2 +4−16  =(y−4)^2 −(2(√3) )^2   =(y−4)^2 −(2(√3) )^2     =(y−4+2(√3) )(y−4−2(√3)  )  critical value of y are(4−2(√3) ),(4+2(√3) )      D>0 when y>4+2(√3)     D>0 when y<(4−2(√3)   so y can not have value between (4−2(√3) )  and(4+2(√3) )  value of y  (−∞,4−2(√3) ] ∪ [4+2(√3),+∞)  at x=5   y is undefined so x can not be 5  pls check and suggest  domain of x=R−{5}
y=x26x+8x5x26x+8xy+5y=0x2+x(6y)+8+5y=0discriminantD=B24AC=(6+y)24(8+5y)=36+12y+y23220y=y28y+4=y22.y.4+(4)2+416=(y4)2(23)2=(y4)2(23)2=(y4+23)(y423)criticalvalueofyare(423),(4+23)D>0wheny>4+23D>0wheny<(423soycannothavevaluebetween(423)and(4+23)valueofy(,423][4+23,+)atx=5yisundefinedsoxcannotbe5plscheckandsuggestdomainofx=R{5}
Commented by tanmay.chaudhury50@gmail.com last updated on 31/May/18
later corrected and put in red coloured font
latercorrectedandputinredcolouredfont
Commented by tanmay.chaudhury50@gmail.com last updated on 31/May/18
i have done a mistake in place of8+5y i put   8−5y
ihavedoneamistakeinplaceof8+5yiput85y
Answered by ajfour last updated on 31/May/18
Commented by ajfour last updated on 31/May/18
((df(x))/dx)=(((2x−6)(x−5)−(x^2 −6x+8))/((x−5)^2 ))  ⇒  f ′(x)=0   for          x^2 −10x+22=0    ⇒ x= ((10±(√(100−88)))/2)             =5±(√3)   (point of local  minima and maxima)  f(x)=(((x−2)(x−4))/((x−5)))  f(5−(√3))=(((3−(√3))(1−(√3)))/(−(√3)))                    =((4(√3)−6)/( (√3))) = 4−2(√3)  f(5+(√3)) = (((3+(√3))(1+(√3)))/( (√3)))                     =4+2(√3) .  Domain :   x∈ R−{5}  Range :  f(x) ∈ (−∞, 4−2(√3) ]∪[4+2(√3) ,∞).
df(x)dx=(2x6)(x5)(x26x+8)(x5)2f(x)=0forx210x+22=0x=10±100882=5±3(pointoflocalminimaandmaxima)f(x)=(x2)(x4)(x5)f(53)=(33)(13)3=4363=423f(5+3)=(3+3)(1+3)3=4+23.Domain:xR{5}Range:f(x)(,423][4+23,).
Answered by ajfour last updated on 31/May/18
xy−5y=x^2 −6x+8  x^2 −(y+6)x+5y+8=0  for real x     (y+6)^2  ≥ 4(5y+8)       y^2 −8y+4 ≥ 0  ⇒   roots are   y=4±2(√3)  ⇒ y ∈ (−∞, 4−2(√3) ]∪[4+2(√3) ,∞).
xy5y=x26x+8x2(y+6)x+5y+8=0forrealx(y+6)24(5y+8)y28y+40rootsarey=4±23y(,423][4+23,).

Leave a Reply

Your email address will not be published. Required fields are marked *