Question Number 39121 by rahul 19 last updated on 02/Jul/18

Commented by math khazana by abdo last updated on 03/Jul/18
![D_f =]−∞,−1[∪]0,+∞[ .](https://www.tinkutara.com/question/Q39137.png)
Commented by prof Abdo imad last updated on 02/Jul/18
![let f(x)=(1+(1/x))^x we have f(x)= e^(xln(1+(1/x))) so x∈D_f ⇔ 1+(1/x)>0 and x≠0 ⇒((x+1)/x)>0 and x≠0 ⇒x(x+1)>0 and x≠0 ⇒ D_f =]−∞,−1]∪]0,+∞[ we have lim_(x→0^+ ) xln(1+(1/x)) =lim_(x→0^+ ) xln(1+x)−xln(x)=0 ⇒ lim_(x→0^+ ) f(x)=e^0 =1 .](https://www.tinkutara.com/question/Q39123.png)
Commented by rahul 19 last updated on 03/Jul/18

Commented by MJS last updated on 03/Jul/18
![mistake in line 3? ((x+1)/x)>0 ⇏ x(x+1)>0 but: ((x+1)/x)>0 ⇒ x≠0 case 1 x>0 ⇒ (x+1>0 ⇒ x>−1) ⇒ x>0 case 2 x<0 ⇒ (x+1<0 ⇒ x<−1) ⇒ x<−1 x∈[−1;0] ⇒ ln ((x+1)/x) ∉R x=−(1/3) ⇒ ln ((x+1)/x) =ln ((2/3)/(−(1/3))) =ln −2](https://www.tinkutara.com/question/Q39152.png)
Commented by rahul 19 last updated on 04/Jul/18
