Menu Close

Find-domain-of-function-r-x-arc-cos-3-4-2sin-x-




Question Number 122337 by benjo_mathlover last updated on 15/Nov/20
 Find domain of function   r(x) = arc cos  ((3/(4+2sin x)))
$$\:{Find}\:{domain}\:{of}\:{function} \\ $$$$\:{r}\left({x}\right)\:=\:\mathrm{arc}\:\mathrm{cos}\:\:\left(\frac{\mathrm{3}}{\mathrm{4}+\mathrm{2sin}\:{x}}\right) \\ $$
Commented by liberty last updated on 16/Nov/20
The function defined for values of x  for which −1≤ (3/(4+2sin x)) ≤ 1 .  Since 4+2sin x > 0 at any x ,the problem  is reduced to solving inequality    (3/(4+2sin x)) ≤ 1 , whence 3 ≤ 4+2sin x  i.e sin x ≥ −(1/2) ⇒ −(π/6)+2kπ ≤ x≤ ((7π)/6)+2kπ   for k ε Z. ▲
$$\mathrm{The}\:\mathrm{function}\:\mathrm{defined}\:\mathrm{for}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x} \\ $$$$\mathrm{for}\:\mathrm{which}\:−\mathrm{1}\leqslant\:\frac{\mathrm{3}}{\mathrm{4}+\mathrm{2sin}\:\mathrm{x}}\:\leqslant\:\mathrm{1}\:. \\ $$$$\mathrm{Since}\:\mathrm{4}+\mathrm{2sin}\:\mathrm{x}\:>\:\mathrm{0}\:\mathrm{at}\:\mathrm{any}\:\mathrm{x}\:,\mathrm{the}\:\mathrm{problem} \\ $$$$\mathrm{is}\:\mathrm{reduced}\:\mathrm{to}\:\mathrm{solving}\:\mathrm{inequality}\: \\ $$$$\:\frac{\mathrm{3}}{\mathrm{4}+\mathrm{2sin}\:\mathrm{x}}\:\leqslant\:\mathrm{1}\:,\:\mathrm{whence}\:\mathrm{3}\:\leqslant\:\mathrm{4}+\mathrm{2sin}\:\mathrm{x} \\ $$$$\mathrm{i}.\mathrm{e}\:\mathrm{sin}\:\mathrm{x}\:\geqslant\:−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:−\frac{\pi}{\mathrm{6}}+\mathrm{2k}\pi\:\leqslant\:\mathrm{x}\leqslant\:\frac{\mathrm{7}\pi}{\mathrm{6}}+\mathrm{2k}\pi \\ $$$$\:\mathrm{for}\:\mathrm{k}\:\epsilon\:\mathbb{Z}.\:\blacktriangle \\ $$
Commented by benjo_mathlover last updated on 16/Nov/20
Commented by benjo_mathlover last updated on 16/Nov/20
correct..thanks
$${correct}..{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *