Menu Close

find-dt-1-cost-sint-




Question Number 30179 by abdo imad last updated on 17/Feb/18
find  ∫    (dt/(1+cost +sint))  .
$${find}\:\:\int\:\:\:\:\frac{{dt}}{\mathrm{1}+{cost}\:+{sint}}\:\:. \\ $$
Commented by abdo imad last updated on 24/Feb/18
the ch. tan((t/2))=x give   I = ∫      (1/(1+((1−x^2 )/(1+x^2 )) + ((2x)/(1+x^2 )))) ((2dx)/(1+x^2 ))  = ∫      ((2dx)/(1+x^2  +1−x^2  +2x)) = ∫    ((2dx)/(2+2x)) = ∫   (dx/(1+x))  =ln∣1+x∣ +λ=  ln∣1 +tan((t/2))∣ +λ .
$${the}\:{ch}.\:{tan}\left(\frac{{t}}{\mathrm{2}}\right)={x}\:{give}\: \\ $$$${I}\:=\:\int\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\:\int\:\:\:\:\:\:\frac{\mathrm{2}{dx}}{\mathrm{1}+{x}^{\mathrm{2}} \:+\mathrm{1}−{x}^{\mathrm{2}} \:+\mathrm{2}{x}}\:=\:\int\:\:\:\:\frac{\mathrm{2}{dx}}{\mathrm{2}+\mathrm{2}{x}}\:=\:\int\:\:\:\frac{{dx}}{\mathrm{1}+{x}} \\ $$$$={ln}\mid\mathrm{1}+{x}\mid\:+\lambda=\:\:{ln}\mid\mathrm{1}\:+{tan}\left(\frac{{t}}{\mathrm{2}}\right)\mid\:+\lambda\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *