Menu Close

find-dt-sin-2t-




Question Number 34284 by math khazana by abdo last updated on 03/May/18
find  ∫   (dt/(sin(2t)))
$${find}\:\:\int\:\:\:\frac{{dt}}{{sin}\left(\mathrm{2}{t}\right)} \\ $$
Commented by math khazana by abdo last updated on 07/May/18
changement tant= x give  ∫     (dt/(sin(2t)))  = ∫     (1/((2x)/(1+x^2 ))) (dx/(1+x^2 )) = (1/2)∫  (dx/x)  =(1/2)ln∣x∣ +c = (1/2) ln∣tant∣ +c .
$${changement}\:{tant}=\:{x}\:{give} \\ $$$$\int\:\:\:\:\:\frac{{dt}}{{sin}\left(\mathrm{2}{t}\right)}\:\:=\:\int\:\:\:\:\:\frac{\mathrm{1}}{\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }}\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\frac{{dx}}{{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{x}\mid\:+{c}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\mid{tant}\mid\:+{c}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *