Menu Close

find-dt-t-1-t-t-t-1-2-calculate-1-3-dt-t-1-t-t-t-1-




Question Number 44306 by abdo.msup.com last updated on 26/Sep/18
find ∫  (dt/((t+1)(√t) +t(√(t+1))))  2) calculate  ∫_1 ^3   (dt/((t+1)(√t)+t(√(t+1))))
$${find}\:\int\:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)\sqrt{{t}}\:+{t}\sqrt{{t}+\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)\sqrt{{t}}+{t}\sqrt{{t}+\mathrm{1}}} \\ $$
Commented by maxmathsup by imad last updated on 29/Sep/18
I = ∫   (dt/( (√t)(√(t+1))((√(t+1))+(√t)))) = ∫   (((√(t+1))−(√t))/( (√t)(√(t+1)))) dt  = ∫ (dt/( (√t)))  −∫  (dt/( (√(t+1)))) =2(√t)−2(√(t+1)) +c .
$${I}\:=\:\int\:\:\:\frac{{dt}}{\:\sqrt{{t}}\sqrt{{t}+\mathrm{1}}\left(\sqrt{{t}+\mathrm{1}}+\sqrt{{t}}\right)}\:=\:\int\:\:\:\frac{\sqrt{{t}+\mathrm{1}}−\sqrt{{t}}}{\:\sqrt{{t}}\sqrt{{t}+\mathrm{1}}}\:{dt} \\ $$$$=\:\int\:\frac{{dt}}{\:\sqrt{{t}}}\:\:−\int\:\:\frac{{dt}}{\:\sqrt{{t}+\mathrm{1}}}\:=\mathrm{2}\sqrt{{t}}−\mathrm{2}\sqrt{{t}+\mathrm{1}}\:+{c}\:. \\ $$
Commented by maxmathsup by imad last updated on 29/Sep/18
∫_1 ^3     (dt/((t+1)(√t)+t(√(t+1)))) =[2(√t)−2(√(t+1))]_1 ^3  =2(√3)−4−2+2(√2)=2(√2)+2(√3)−6.
$$\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)\sqrt{{t}}+{t}\sqrt{{t}+\mathrm{1}}}\:=\left[\mathrm{2}\sqrt{{t}}−\mathrm{2}\sqrt{{t}+\mathrm{1}}\right]_{\mathrm{1}} ^{\mathrm{3}} \:=\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{4}−\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}=\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{6}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *