Question Number 47059 by maxmathsup by imad last updated on 04/Nov/18

Commented by maxmathsup by imad last updated on 06/Nov/18

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Nov/18

Commented by maxmathsup by imad last updated on 05/Nov/18

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Nov/18

Answered by ajfour last updated on 04/Nov/18
![I=∫(dx/(2cos^2 x+cos x)) let tan (x/2) = t ⇒ dx = ((2dt)/(1+t^2 )) I=∫((2dt)/((1+t^2 )[2(((1−t^2 )/(1+t^2 )))^2 +((1−t^2 )/(1+t^2 ))])) =∫((2(1+t^2 )dt)/(2(1−t^2 )^2 +1−t^4 )) = 2∫(((1+t^2 )dt)/(t^4 −4t^2 +3)) = 2∫ ((((1/t^2 )+1)dt)/(t^2 +(3/t^2 )−4)) let a(1−((√3)/t^2 ))+b(1+((√3)/t^2 ))=(1/t^2 )+1 ⇒ a+b=1 & b−a = (1/( (√3))) ⇒ a=(1/2)−(1/(2(√3))) ; b = (1/2)+(1/(2(√3))) I= (1−(1/( (√3))))∫(((1−((√3)/t^2 ))dt)/((t+((√3)/t))^2 −4−2(√3))) +(1+(1/( (√3))))∫(((1+((√3)/t^2 ))dt)/((t−((√3)/t))^2 −4+2(√3))) I= ((((√3)−1)/( (√3))))(1/(2(√(4+2(√3)))))ln ∣((t+((√3)/t)−(√(4+2(√3))))/(t+((√3)/t)+(√(4+2(√3)))))∣ +((((√3)+1)/( (√3))))(1/(2(√(4−2(√3)))))ln ∣((t+((√3)/t)−(√(4−2(√3))))/(t+((√3)/t)+(√(4−2(√3)))))∣+c .](https://www.tinkutara.com/question/Q47072.png)
Commented by maxmathsup by imad last updated on 04/Nov/18
