Menu Close

find-dx-1-cos-x-cos-2x-




Question Number 47059 by maxmathsup by imad last updated on 04/Nov/18
 find ∫  (dx/(1+cos x +cos(2x)))
finddx1+cosx+cos(2x)
Commented by maxmathsup by imad last updated on 06/Nov/18
let A =∫   (dx/(1+cosx +cos(2x))) = ∫  (dx/(1+cos(x)+2cos^2 x−1))  =∫  (dx/(cosx(1+2cosx))) =∫ ((1/(cosx)) −(2/(1+2cosx)))dx =∫ (dx/(cosx)) −∫  (2/(1+2cosx))dx  but ∫  (dx/(cosx)) =_(tan((x/2))=t)   ∫  (1/((1−t^2 )/(1+t^2 ))) ((2dt)/(1+t^2 )) =∫  ((2dt)/(1−t^2 )) =∫ ((1/(1−t)) +(1/(1+t)))dt  =ln∣((1+t)/(1−t))∣ +c_1 =ln∣((1+tan((x/2)))/(1−tan((x/2))))∣=ln∣tan((x/2)+(π/4))∣ +c_1   also we have  ∫ (2/(1+2cosx))dt =_(tan((x/2))=t)    ∫  (2/(1+2 ((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 )) =4 ∫    (dt/(1+t^2 +2−2t^2 ))  =4 ∫  (dt/(3−t^2 )) =_(t =(√3)u)  4  ∫     (((√3)du)/(3(1−u^2 ))) =((2(√3))/4) ∫  ((2du)/(1−u^2 )) =((√3)/2)ln∣((1+u)/(1−u))∣ +c_2   =((√3)/2)ln∣((1+(t/( (√3))))/(1−(t/( (√3)))))∣ +c_2 =((√3)/2)ln∣(((√3)+t)/( (√3)−t))∣ +c_2   finally   A =ln∣tan((x/2)+(π/4))∣−((√3)/2)ln∣(((√3)+tan((x/2)))/( (√3)−tan((x/2))))∣ +C .
letA=dx1+cosx+cos(2x)=dx1+cos(x)+2cos2x1=dxcosx(1+2cosx)=(1cosx21+2cosx)dx=dxcosx21+2cosxdxbutdxcosx=tan(x2)=t11t21+t22dt1+t2=2dt1t2=(11t+11+t)dt=ln1+t1t+c1=ln1+tan(x2)1tan(x2)∣=lntan(x2+π4)+c1alsowehave21+2cosxdt=tan(x2)=t21+21t21+t22dt1+t2=4dt1+t2+22t2=4dt3t2=t=3u43du3(1u2)=2342du1u2=32ln1+u1u+c2=32ln1+t31t3+c2=32ln3+t3t+c2finallyA=lntan(x2+π4)32ln3+tan(x2)3tan(x2)+C.
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Nov/18
∫(dx/(cosx+2cos^2 x))  ∫(dx/(cosx(1+2cosx)))  ∫((1+2cosx−2cosx)/(cosx(1+2cosx)))dx  ∫(dx/(cosx))−∫((2dx)/(2((1/2)+cosx)))  ∫secxdx−∫(dx/((1/2)+((1−tan^2 (x/2))/(1+tan^2 (x/2)))))  ∫secx dx−∫((sec^2 (x/2))/((3/2)−(1/2)tan^2 (x/2)))dx  ∫secxdx−2∫((sec^2 (x/2))/(3−tan^2 (x/2)))dx  I_1 −2I_2   I_1 =∫secxdx  =ln∣sex+tanx∣+c_1   I_2 =∫((sec^2 (x/2))/(3−tan^2 (x/2)))dx  t=tan(x/2)   dt=sec^2 (x/2)×(1/2)dx  I_2 =∫((2dt)/(((√3) )^2 −t^2 ))  =2×(1/(2(√3)))ln∣(((√3) +t)/( (√3) −t))∣+c_2   =(1/( (√3)))ln∣(((√3) +tan(x/2))/( (√3) −tan(x/2)))∣+c_2
dxcosx+2cos2xdxcosx(1+2cosx)1+2cosx2cosxcosx(1+2cosx)dxdxcosx2dx2(12+cosx)secxdxdx12+1tan2x21+tan2x2secxdxsec2x23212tan2x2dxsecxdx2sec2x23tan2x2dxI12I2I1=secxdx=lnsex+tanx+c1I2=sec2x23tan2x2dxt=tanx2dt=sec2x2×12dxI2=2dt(3)2t2=2×123ln3+t3t+c2=13ln3+tanx23tanx2+c2
Commented by maxmathsup by imad last updated on 05/Nov/18
thanks sir.
thankssir.
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Nov/18
thank you sir...
thankyousir
Answered by ajfour last updated on 04/Nov/18
I=∫(dx/(2cos^2 x+cos x))     let  tan (x/2) = t  ⇒  dx = ((2dt)/(1+t^2 ))  I=∫((2dt)/((1+t^2 )[2(((1−t^2 )/(1+t^2 )))^2 +((1−t^2 )/(1+t^2 ))]))     =∫((2(1+t^2 )dt)/(2(1−t^2 )^2 +1−t^4 ))    = 2∫(((1+t^2 )dt)/(t^4 −4t^2 +3)) = 2∫ ((((1/t^2 )+1)dt)/(t^2 +(3/t^2 )−4))  let a(1−((√3)/t^2 ))+b(1+((√3)/t^2 ))=(1/t^2 )+1  ⇒  a+b=1   &  b−a = (1/( (√3)))  ⇒  a=(1/2)−(1/(2(√3)))  ;  b = (1/2)+(1/(2(√3)))    I= (1−(1/( (√3))))∫(((1−((√3)/t^2 ))dt)/((t+((√3)/t))^2 −4−2(√3)))           +(1+(1/( (√3))))∫(((1+((√3)/t^2 ))dt)/((t−((√3)/t))^2 −4+2(√3)))  I= ((((√3)−1)/( (√3))))(1/(2(√(4+2(√3)))))ln ∣((t+((√3)/t)−(√(4+2(√3))))/(t+((√3)/t)+(√(4+2(√3)))))∣   +((((√3)+1)/( (√3))))(1/(2(√(4−2(√3)))))ln ∣((t+((√3)/t)−(√(4−2(√3))))/(t+((√3)/t)+(√(4−2(√3)))))∣+c .
I=dx2cos2x+cosxlettanx2=tdx=2dt1+t2I=2dt(1+t2)[2(1t21+t2)2+1t21+t2]=2(1+t2)dt2(1t2)2+1t4=2(1+t2)dtt44t2+3=2(1t2+1)dtt2+3t24leta(13t2)+b(1+3t2)=1t2+1a+b=1&ba=13a=12123;b=12+123I=(113)(13t2)dt(t+3t)2423+(1+13)(1+3t2)dt(t3t)24+23I=(313)124+23lnt+3t4+23t+3t+4+23+(3+13)12423lnt+3t423t+3t+423+c.
Commented by maxmathsup by imad last updated on 04/Nov/18
thank you sir Ajfour
thankyousirAjfour

Leave a Reply

Your email address will not be published. Required fields are marked *