Question Number 43913 by maxmathsup by imad last updated on 17/Sep/18
$${find}\:\int\:\:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{cosx}}\:+\sqrt{\mathrm{1}+{cosx}}} \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 18/Sep/18
$${I}\:=\int\:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}+\sqrt{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\int\:\:\:\frac{{dx}}{{sin}\left(\frac{{x}}{\mathrm{2}}\right)+{cos}\left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$$=_{\frac{{x}}{\mathrm{2}}={t}} \:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\:\:\:\:\frac{\mathrm{2}{dt}}{{sint}\:+{cost}}\:{dt}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\:\:\:\frac{\mathrm{2}{dt}}{\:\sqrt{\mathrm{2}}{cos}\left({t}−\frac{\pi}{\mathrm{4}}\right)}{dt}=_{{t}−\frac{\pi}{\mathrm{4}}={u}} \:\int\:\:\frac{{du}}{{cosu}} \\ $$$$=_{{tan}\left(\frac{{u}}{\mathrm{2}}\right)=\alpha} \:\:\:\:\:\:\int\:\:\frac{\mathrm{1}}{\frac{\mathrm{1}−\alpha^{\mathrm{2}} }{\mathrm{1}+\alpha^{\mathrm{2}} }}\:\:\frac{\mathrm{2}{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }\:=\mathrm{2}\int\:\:\:\frac{{d}\alpha}{\mathrm{1}−\alpha^{\mathrm{2}} }\:=\:\int\:\:\left\{\frac{\mathrm{1}}{\mathrm{1}−\alpha}\:+\frac{\mathrm{1}}{\mathrm{1}+\alpha}\right\}{d}\alpha \\ $$$$={ln}\mid\frac{\mathrm{1}+\alpha}{\mathrm{1}−\alpha}\mid\:={ln}\mid\frac{\mathrm{1}+{tan}\left(\frac{{u}}{\mathrm{2}}\right)}{\mathrm{1}−{tan}\left(\frac{{u}}{\mathrm{2}}\right)}\mid\:={ln}\mid{tan}\left(\frac{{u}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)\mid\:+{c} \\ $$$$={ln}\mid{tan}\left(\frac{{t}}{\mathrm{2}}\:−\frac{\pi}{\mathrm{8}}\:+\frac{\pi}{\mathrm{4}}\right)\mid\:+{c}\:=\:{ln}\mid{tan}\left(\frac{{t}}{\mathrm{2}}+\frac{\pi}{\mathrm{8}}\right)\mid\:+{c}\: \\ $$
Commented by maxmathsup by imad last updated on 18/Sep/18
$${but}\:{t}\:=\frac{{x}}{\mathrm{2}}\:\Rightarrow\:{I}\:={ln}\mid{tan}\left(\frac{{x}}{\mathrm{4}}+\frac{\pi}{\mathrm{8}}\right)\mid\:+{c}\:. \\ $$
Commented by math1967 last updated on 18/Sep/18
$${It}\:{is}\:{simplest}\:{form}\:{of}\: \\ $$$${cosec}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)−{cot}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)\:{sir} \\ $$$${is}\:{it}\:{not}? \\ $$
Commented by maxmathsup by imad last updated on 18/Sep/18
$${perhaps}\:{because}\:{i}\:{dont}\:{use}\:{the}\:{symbol}\:\:{cosec}\:{and}\:{sec}… \\ $$
Answered by math1967 last updated on 18/Sep/18
$$\int\frac{{dx}}{\:\sqrt{\mathrm{2}{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}\:+\sqrt{\mathrm{2}{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}} \\ $$$$\int\frac{{dx}}{\:\sqrt{\mathrm{2}}{sin}\frac{{x}}{\mathrm{2}}+\sqrt{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}} \\ $$$$\int\frac{{dx}}{\mathrm{2}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{sin}\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{cos}\frac{{x}}{\mathrm{2}}\right)} \\ $$$$\int\frac{{dx}}{\mathrm{2}\left({sin}\frac{{x}}{\mathrm{2}}{cos}\frac{\pi}{\mathrm{4}}+{cos}\frac{{x}}{\mathrm{2}}{sin}\frac{\pi}{\mathrm{4}}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{{dx}}{{sin}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int{cosec}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right){dx} \\ $$$$\int{cosec}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right){d}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right) \\ $$$${ln}\left[{cosec}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)−{cot}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)\right]\:+{c} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18
$$\int\frac{{dx}}{\:\sqrt{\mathrm{2}}\:{sin}\frac{{x}}{\mathrm{2}}+\sqrt{\mathrm{2}}\:{cos}\frac{{x}}{\mathrm{2}}} \\ $$$$\int\frac{{dx}}{\mathrm{2}×\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:}{sin}\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:}{cos}\frac{{x}}{\mathrm{2}}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int{cosec}\left(\frac{{x}}{\mathrm{2}}+\frac{\Pi}{\mathrm{4}}\right){dx}\:\:\left[\int{cosecx}={lntan}\frac{{x}}{\mathrm{2}}\right] \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\left\{{tan}\left(\frac{{x}}{\mathrm{4}}+\frac{\Pi}{\mathrm{8}}\right)\right\}×\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${ln}\left\{{tan}\left(\frac{{x}}{\mathrm{4}}+\frac{\Pi}{\mathrm{8}}\right)\right\}+{c} \\ $$