Menu Close

find-dx-1-cosx-cos-2x-




Question Number 144213 by Mathspace last updated on 23/Jun/21
find ∫  (dx/(1+cosx+cos(2x)))
$${find}\:\int\:\:\frac{{dx}}{\mathrm{1}+{cosx}+{cos}\left(\mathrm{2}{x}\right)} \\ $$
Answered by bemath last updated on 23/Jun/21
∫ (dx/(1+cos x+2cos^2 x−1))  = ∫ (dx/(2cos^2 x+cos x))  = ∫ (dx/(cos x(2cos x+1)))  let tan ((x/2)) = u ⇒du=(1/2)sec^2 ((x/2))dx  dx=2cos^2 ((x/2))du =(2/(1+u^2 )) du  =∫ ((2/(1+u^2 ))/((((1−u^2 )/(1+u^2 )))(((3−u^2 )/(1+u^2 ))))) du  = ∫ ((2(1+u^2 ))/((1−u^2 )(3−u^2 ))) du   partial fraction   ((2+2u^2 )/((1+u)(1−u)((√3)+u)((√3)−u))) =   (a/(1+u))+(b/(1−u))+(c/( (√3)+u))+(d/( (√3)−u))
$$\int\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}+\mathrm{2cos}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}} \\ $$$$=\:\int\:\frac{\mathrm{dx}}{\mathrm{2cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:\mathrm{x}} \\ $$$$=\:\int\:\frac{\mathrm{dx}}{\mathrm{cos}\:\mathrm{x}\left(\mathrm{2cos}\:\mathrm{x}+\mathrm{1}\right)} \\ $$$$\mathrm{let}\:\mathrm{tan}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\:=\:\mathrm{u}\:\Rightarrow\mathrm{du}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sec}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{dx} \\ $$$$\mathrm{dx}=\mathrm{2cos}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{du}\:=\frac{\mathrm{2}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\:\mathrm{du} \\ $$$$=\int\:\frac{\frac{\mathrm{2}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }}{\left(\frac{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\right)\left(\frac{\mathrm{3}−\mathrm{u}^{\mathrm{2}} }{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\right)}\:\mathrm{du} \\ $$$$=\:\int\:\frac{\mathrm{2}\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)}{\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\left(\mathrm{3}−\mathrm{u}^{\mathrm{2}} \right)}\:\mathrm{du}\: \\ $$$$\mathrm{partial}\:\mathrm{fraction}\: \\ $$$$\frac{\mathrm{2}+\mathrm{2u}^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{u}\right)\left(\mathrm{1}−\mathrm{u}\right)\left(\sqrt{\mathrm{3}}+\mathrm{u}\right)\left(\sqrt{\mathrm{3}}−\mathrm{u}\right)}\:= \\ $$$$\:\frac{\mathrm{a}}{\mathrm{1}+\mathrm{u}}+\frac{\mathrm{b}}{\mathrm{1}−\mathrm{u}}+\frac{\mathrm{c}}{\:\sqrt{\mathrm{3}}+\mathrm{u}}+\frac{\mathrm{d}}{\:\sqrt{\mathrm{3}}−\mathrm{u}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *