Menu Close

find-dx-1-x-2-1-x-2-




Question Number 41846 by maxmathsup by imad last updated on 13/Aug/18
find  ∫     (dx/( (√(1+x^2  ))  +(√(1−x^2 ))))
$${find}\:\:\int\:\:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}\:\:+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$
Answered by MJS last updated on 13/Aug/18
∫(dx/( (√(1+x^2 ))+(√(1−x^2 ))))=(1/2)∫((√(1+x^2 ))/x^2 )dx−(1/2)∫((√(1−x^2 ))/x^2 )dx=       [both integrals by parts]  =(1/2)(arcsin x +arcsinh x)+(((√(1−x^2 ))−(√(1+x^2 )))/(2x))+C
$$\int\frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} }{dx}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{both}\:\mathrm{integrals}\:\mathrm{by}\:\mathrm{parts}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{arcsin}\:{x}\:+\mathrm{arcsinh}\:{x}\right)+\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{2}{x}}+{C} \\ $$
Commented by math khazana by abdo last updated on 14/Aug/18
thank you sir.
$${thank}\:{you}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *