Menu Close

find-dx-arcsinx-1-x-2-




Question Number 36752 by prof Abdo imad last updated on 05/Jun/18
find  ∫   (dx/(arcsinx(√(1−x^2 )))) .
$${find}\:\:\int\:\:\:\frac{{dx}}{{arcsinx}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
is it ∫(dx/(sin^(−1) (x(√(1−x^2 )) )))  pls clarify
$${is}\:{it}\:\int\frac{{dx}}{{sin}^{−\mathrm{1}} \left({x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right)}\:\:{pls}\:{clarify} \\ $$
Commented by abdo.msup.com last updated on 05/Jun/18
find ∫    (dx/( (√(1−x^2 ))arcsin(x)))
$${find}\:\int\:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{arcsin}\left({x}\right)} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
ok...sir
$${ok}…{sir} \\ $$
Commented by prof Abdo imad last updated on 06/Jun/18
changement x=sinθ give   I = ∫     ((cosθ dθ)/(θ cosθ)) = ∫  (dθ/θ) =ln∣θ∣ +c  I = ln∣ arcsin(x)∣ +c .
$${changement}\:{x}={sin}\theta\:{give}\: \\ $$$${I}\:=\:\int\:\:\:\:\:\frac{{cos}\theta\:{d}\theta}{\theta\:{cos}\theta}\:=\:\int\:\:\frac{{d}\theta}{\theta}\:={ln}\mid\theta\mid\:+{c} \\ $$$${I}\:=\:{ln}\mid\:{arcsin}\left({x}\right)\mid\:+{c}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
∫(dx/(((√(1−x^2 )) )sin^(−1) x))  t=sin^(−1) x  x=sint  dx=cost dt  ∫((cost dt)/( (√(1−sin^2 t)) ×t))  ∫(dt/t)=lnt +c  =ln∣(sin^(−1) x)∣ +c
$$\int\frac{{dx}}{\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right){sin}^{−\mathrm{1}} {x}} \\ $$$${t}={sin}^{−\mathrm{1}} {x} \\ $$$${x}={sint} \\ $$$${dx}={cost}\:{dt} \\ $$$$\int\frac{{cost}\:{dt}}{\:\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} {t}}\:×{t}} \\ $$$$\int\frac{{dt}}{{t}}={lnt}\:+{c} \\ $$$$={ln}\mid\left({sin}^{−\mathrm{1}} {x}\right)\mid\:+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *