Menu Close

find-dx-arcsinx-1-x-2-




Question Number 36752 by prof Abdo imad last updated on 05/Jun/18
find  ∫   (dx/(arcsinx(√(1−x^2 )))) .
finddxarcsinx1x2.
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
is it ∫(dx/(sin^(−1) (x(√(1−x^2 )) )))  pls clarify
isitdxsin1(x1x2)plsclarify
Commented by abdo.msup.com last updated on 05/Jun/18
find ∫    (dx/( (√(1−x^2 ))arcsin(x)))
finddx1x2arcsin(x)
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
ok...sir
oksir
Commented by prof Abdo imad last updated on 06/Jun/18
changement x=sinθ give   I = ∫     ((cosθ dθ)/(θ cosθ)) = ∫  (dθ/θ) =ln∣θ∣ +c  I = ln∣ arcsin(x)∣ +c .
changementx=sinθgiveI=cosθdθθcosθ=dθθ=lnθ+cI=lnarcsin(x)+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
∫(dx/(((√(1−x^2 )) )sin^(−1) x))  t=sin^(−1) x  x=sint  dx=cost dt  ∫((cost dt)/( (√(1−sin^2 t)) ×t))  ∫(dt/t)=lnt +c  =ln∣(sin^(−1) x)∣ +c
dx(1x2)sin1xt=sin1xx=sintdx=costdtcostdt1sin2t×tdtt=lnt+c=ln(sin1x)+c

Leave a Reply

Your email address will not be published. Required fields are marked *