Menu Close

find-dx-cos-4-x-




Question Number 103860 by mathmax by abdo last updated on 17/Jul/20
find ∫ (dx/(cos^4 x))
$$\mathrm{find}\:\int\:\frac{\mathrm{dx}}{\mathrm{cos}^{\mathrm{4}} \mathrm{x}} \\ $$
Answered by Dwaipayan Shikari last updated on 17/Jul/20
∫(dx/(cos^4 x))=∫sec^4 xdx=∫sec^2 x(1+tan^2 x)dx=∫(1+t^2 )dt=t+(t^3 /3)+C  tanx+((tan^3 x)/3)+C           {put t=tanx
$$\int\frac{{dx}}{{cos}^{\mathrm{4}} {x}}=\int{sec}^{\mathrm{4}} {xdx}=\int{sec}^{\mathrm{2}} {x}\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right){dx}=\int\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt}={t}+\frac{{t}^{\mathrm{3}} }{\mathrm{3}}+{C} \\ $$$${tanx}+\frac{{tan}^{\mathrm{3}} {x}}{\mathrm{3}}+{C}\:\:\:\:\:\:\:\:\:\:\:\left\{{put}\:{t}={tanx}\right. \\ $$
Answered by mathmax by abdo last updated on 17/Jul/20
I =∫  (dx/(cos^4 x))  we know  1+tan^2 x =(1/(cos^2 x)) ⇒(1/(cos^4 x)) =(1+tan^2 x)^2 ⇒  I =∫   (1+tan^2 x)^2  dx =_(tanx =u)    ∫ (1+u^2 )^2 (du/(1+u^2 )) =∫ (1+u^2 )du  =u +(u^3 /3)  +C =tanx +(1/3)tan^3 x +C .
$$\mathrm{I}\:=\int\:\:\frac{\mathrm{dx}}{\mathrm{cos}^{\mathrm{4}} \mathrm{x}}\:\:\mathrm{we}\:\mathrm{know}\:\:\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}\:=\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:\Rightarrow\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{4}} \mathrm{x}}\:=\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)^{\mathrm{2}} \Rightarrow \\ $$$$\mathrm{I}\:=\int\:\:\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)^{\mathrm{2}} \:\mathrm{dx}\:=_{\mathrm{tanx}\:=\mathrm{u}} \:\:\:\int\:\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} \frac{\mathrm{du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\:=\int\:\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)\mathrm{du} \\ $$$$=\mathrm{u}\:+\frac{\mathrm{u}^{\mathrm{3}} }{\mathrm{3}}\:\:+\mathrm{C}\:=\mathrm{tanx}\:+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}^{\mathrm{3}} \mathrm{x}\:+\mathrm{C}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *