Question Number 45795 by maxmathsup by imad last updated on 16/Oct/18

Answered by MJS last updated on 17/Oct/18
![(1/(cos x sin^2 x))=(1+((cos^2 x)/(sin^2 x)))(1/(cos x)) = =(1/(cos x))+((cos x)/(sin^2 x)) ∫(dx/(cos x))=∫sec x dx=ln ∣tan x +sec x∣ =ln ∣((1+sin x)/(cos x))∣ ∫((cos x)/(sin^2 x))dx= [t=sin x → dx=(dt/(cos x))] =∫(dt/t^2 )=−(1/t)=−(1/(sin x)) ∫(dx/(cos x sin^2 x))=ln ∣((1+sin x)/(cos x))∣ −(1/(sin x))+C](https://www.tinkutara.com/question/Q45798.png)
Commented by math khazana by abdo last updated on 17/Oct/18

Commented by MJS last updated on 17/Oct/18
![btw (1/(cos^2 x sin x))=(1+((sin^2 x)/(cos^2 x)))(1/(sin x))= =(1/(sin x))+((sin x)/(cos^2 x)) ∫(dx/(sin x))=∫csc x dx=−ln ∣cot x +csc x∣ =−ln ∣((1+cos x)/(sin x))∣ ∫((sin x)/(cos^2 x))dx= [t=cos x → dx=−(dt/(sin x))] =−∫(dt/t^2 )=(1/t)=(1/(cos x))](https://www.tinkutara.com/question/Q45800.png)
Commented by MJS last updated on 17/Oct/18
