Menu Close

find-dx-cosx-sin-2-x-




Question Number 45795 by maxmathsup by imad last updated on 16/Oct/18
find ∫ (dx/(cosx sin^2 x))
$${find}\:\int\:\frac{{dx}}{{cosx}\:{sin}^{\mathrm{2}} {x}} \\ $$
Answered by MJS last updated on 17/Oct/18
(1/(cos x sin^2  x))=(1+((cos^2  x)/(sin^2  x)))(1/(cos x)) =  =(1/(cos x))+((cos x)/(sin^2  x))  ∫(dx/(cos x))=∫sec x dx=ln ∣tan x +sec x∣ =ln ∣((1+sin x)/(cos x))∣  ∫((cos x)/(sin^2  x))dx=       [t=sin x → dx=(dt/(cos x))]  =∫(dt/t^2 )=−(1/t)=−(1/(sin x))  ∫(dx/(cos x sin^2  x))=ln ∣((1+sin x)/(cos x))∣ −(1/(sin x))+C
$$\frac{\mathrm{1}}{\mathrm{cos}\:{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}}=\left(\mathrm{1}+\frac{\mathrm{cos}^{\mathrm{2}} \:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}}\right)\frac{\mathrm{1}}{\mathrm{cos}\:{x}}\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{cos}\:{x}}+\frac{\mathrm{cos}\:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}} \\ $$$$\int\frac{{dx}}{\mathrm{cos}\:{x}}=\int\mathrm{sec}\:{x}\:{dx}=\mathrm{ln}\:\mid\mathrm{tan}\:{x}\:+\mathrm{sec}\:{x}\mid\:=\mathrm{ln}\:\mid\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\mid \\ $$$$\int\frac{\mathrm{cos}\:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sin}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{cos}\:{x}}\right] \\ $$$$=\int\frac{{dt}}{{t}^{\mathrm{2}} }=−\frac{\mathrm{1}}{{t}}=−\frac{\mathrm{1}}{\mathrm{sin}\:{x}} \\ $$$$\int\frac{{dx}}{\mathrm{cos}\:{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}}=\mathrm{ln}\:\mid\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\mid\:−\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+{C} \\ $$
Commented by math khazana by abdo last updated on 17/Oct/18
thank you sir MJS.
$${thank}\:{you}\:{sir}\:{MJS}. \\ $$
Commented by MJS last updated on 17/Oct/18
btw  (1/(cos^2  x sin x))=(1+((sin^2  x)/(cos^2  x)))(1/(sin x))=  =(1/(sin x))+((sin x)/(cos^2  x))  ∫(dx/(sin x))=∫csc x dx=−ln ∣cot x +csc x∣ =−ln ∣((1+cos x)/(sin x))∣  ∫((sin x)/(cos^2  x))dx=       [t=cos x → dx=−(dt/(sin x))]  =−∫(dt/t^2 )=(1/t)=(1/(cos x))
$$\mathrm{btw} \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \:{x}\:\mathrm{sin}\:{x}}=\left(\mathrm{1}+\frac{\mathrm{sin}^{\mathrm{2}} \:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}}\right)\frac{\mathrm{1}}{\mathrm{sin}\:{x}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+\frac{\mathrm{sin}\:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}} \\ $$$$\int\frac{{dx}}{\mathrm{sin}\:{x}}=\int\mathrm{csc}\:{x}\:{dx}=−\mathrm{ln}\:\mid\mathrm{cot}\:{x}\:+\mathrm{csc}\:{x}\mid\:=−\mathrm{ln}\:\mid\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}\mid \\ $$$$\int\frac{\mathrm{sin}\:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{cos}\:{x}\:\rightarrow\:{dx}=−\frac{{dt}}{\mathrm{sin}\:{x}}\right] \\ $$$$=−\int\frac{{dt}}{{t}^{\mathrm{2}} }=\frac{\mathrm{1}}{{t}}=\frac{\mathrm{1}}{\mathrm{cos}\:{x}} \\ $$
Commented by MJS last updated on 17/Oct/18
you′re welcome. I just fixed a typo...
$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome}.\:\mathrm{I}\:\mathrm{just}\:\mathrm{fixed}\:\mathrm{a}\:\mathrm{typo}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *