Menu Close

find-dx-cosx-sin-2-x-




Question Number 45795 by maxmathsup by imad last updated on 16/Oct/18
find ∫ (dx/(cosx sin^2 x))
finddxcosxsin2x
Answered by MJS last updated on 17/Oct/18
(1/(cos x sin^2  x))=(1+((cos^2  x)/(sin^2  x)))(1/(cos x)) =  =(1/(cos x))+((cos x)/(sin^2  x))  ∫(dx/(cos x))=∫sec x dx=ln ∣tan x +sec x∣ =ln ∣((1+sin x)/(cos x))∣  ∫((cos x)/(sin^2  x))dx=       [t=sin x → dx=(dt/(cos x))]  =∫(dt/t^2 )=−(1/t)=−(1/(sin x))  ∫(dx/(cos x sin^2  x))=ln ∣((1+sin x)/(cos x))∣ −(1/(sin x))+C
1cosxsin2x=(1+cos2xsin2x)1cosx==1cosx+cosxsin2xdxcosx=secxdx=lntanx+secx=ln1+sinxcosxcosxsin2xdx=[t=sinxdx=dtcosx]=dtt2=1t=1sinxdxcosxsin2x=ln1+sinxcosx1sinx+C
Commented by math khazana by abdo last updated on 17/Oct/18
thank you sir MJS.
thankyousirMJS.
Commented by MJS last updated on 17/Oct/18
btw  (1/(cos^2  x sin x))=(1+((sin^2  x)/(cos^2  x)))(1/(sin x))=  =(1/(sin x))+((sin x)/(cos^2  x))  ∫(dx/(sin x))=∫csc x dx=−ln ∣cot x +csc x∣ =−ln ∣((1+cos x)/(sin x))∣  ∫((sin x)/(cos^2  x))dx=       [t=cos x → dx=−(dt/(sin x))]  =−∫(dt/t^2 )=(1/t)=(1/(cos x))
btw1cos2xsinx=(1+sin2xcos2x)1sinx==1sinx+sinxcos2xdxsinx=cscxdx=lncotx+cscx=ln1+cosxsinxsinxcos2xdx=[t=cosxdx=dtsinx]=dtt2=1t=1cosx
Commented by MJS last updated on 17/Oct/18
you′re welcome. I just fixed a typo...
yourewelcome.Ijustfixedatypo

Leave a Reply

Your email address will not be published. Required fields are marked *