find-dx-sinx-sin-2x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 29445 by prof Abdo imad last updated on 08/Feb/18 find∫dxsinx+sin(2x). Answered by mrW2 last updated on 09/Feb/18 =∫dxsinx(1+2cosx)=∫sinxdxsin2x(1+2cosx)=∫d(cosx)(cos2x−1)(2cosx+1)=∫dt(t2−1)(2t+1)=∫[−12(t+1)−16(t−1)+43(2t+1)]dt=−ln(t+1)2−ln(t−1)6+2ln(2t+1)3+C=−3ln(t+1)6−ln(t−1)6+4ln(2t+1)6+C=−ln(t+1)36−ln(t−1)6+ln(2t+1)46+C=16ln∣(2t+1)4(t+1)3(t−1)∣+C=16ln∣(2cosx+1)4(cosx+1)3(cosx−1)∣+C=16ln∣(2cosx+1)4(cosx+1)2(sin2x)∣+C=13ln∣(2cosx+1)2sinx(cosx+1)∣+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-pi-sinx-1-sin-2-x-dx-Next Next post: let-give-a-lt-1-find-the-value-of-f-a-0-pi-2-dx-1-acos-2-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.