Menu Close

find-dx-sinx-sin-2x-




Question Number 29445 by prof Abdo imad last updated on 08/Feb/18
find   ∫       (dx/(sinx +sin(2x))) .
finddxsinx+sin(2x).
Answered by mrW2 last updated on 09/Feb/18
=∫(dx/(sin x(1+2cos x)))  =∫((sin x dx)/(sin^2  x(1+2cos x)))  =∫((d(cos x))/((cos^2  x−1)(2cos x+1)))  =∫(dt/((t^2 −1)(2t+1)))  =∫[−(1/(2(t+1)))−(1/(6(t−1)))+(4/(3(2t+1)))]dt  =−((ln (t+1))/2)−((ln (t−1))/6)+((2ln (2t+1))/3)+C  =−((3ln (t+1))/6)−((ln (t−1))/6)+((4ln (2t+1))/6)+C  =−((ln (t+1)^3 )/6)−((ln (t−1))/6)+((ln (2t+1)^4 )/6)+C  =(1/6)ln∣ (((2t+1)^4 )/((t+1)^3 (t−1)))∣+C  =(1/6)ln∣ (((2cos x+1)^4 )/((cos x+1)^3 (cos x−1)))∣+C  =(1/6)ln∣ (((2cos x+1)^4 )/((cos x+1)^2 (sin^2  x)))∣+C  =(1/3)ln∣ (((2cos x+1)^2 )/(sin x (cos x+1)))∣+C
=dxsinx(1+2cosx)=sinxdxsin2x(1+2cosx)=d(cosx)(cos2x1)(2cosx+1)=dt(t21)(2t+1)=[12(t+1)16(t1)+43(2t+1)]dt=ln(t+1)2ln(t1)6+2ln(2t+1)3+C=3ln(t+1)6ln(t1)6+4ln(2t+1)6+C=ln(t+1)36ln(t1)6+ln(2t+1)46+C=16ln(2t+1)4(t+1)3(t1)+C=16ln(2cosx+1)4(cosx+1)3(cosx1)+C=16ln(2cosx+1)4(cosx+1)2(sin2x)+C=13ln(2cosx+1)2sinx(cosx+1)+C

Leave a Reply

Your email address will not be published. Required fields are marked *