Menu Close

find-dx-x-1-x-2-1-x-1-x-2-1-




Question Number 113628 by mathmax by abdo last updated on 14/Sep/20
find ∫  (dx/((x+1)(√(x^2 −1))+(x−1)(√(x^2  +1))))
finddx(x+1)x21+(x1)x2+1
Answered by MJS_new last updated on 16/Sep/20
∫(dx/((x+1)(√(x^2 −1))+(x−1)(√(x^2 +1))))=  =∫(((x+1)(√(x^2 −1))−(x−1)(√(x^2 +1)))/(2(x−1)(2x^2 +x+1)))dx=  =(1/4)∫((√(x^2 −1))/(x−1))dx−(1/2)∫((√(x^2 +1))/(2x^2 +x+1))dx−(1/4)∫(((2x+1)(√(x^2 −1)))/(2x^2 +x+1))dx    (1/4)∫((√(x^2 −1))/(x−1))dx=     ( )       [t=x+(√(x^2 −1)) → dx=((√(x^2 −1))/(x+(√(x^2 −1))))dt]  =(1/8)∫(((t+1)^2 )/t^2 )dt=((t^2 −1)/(8t))+(1/4)ln t =  =(1/4)(√(x^2 −1))+(1/4)ln (x+(√(x^2 −1)))    −(1/2)∫((√(x^2 +1))/(2x^2 +x+1))dx=       [t=x+(√(x^2 +1)) → dx=((√(x^2 +1))/(x+(√(x^2 +1))))]  =−(1/4)∫(((t^2 +1)^2 )/(t(t^4 +t^3 −t+1)))dt  now we must decompose  t^4 +t^3 −t+1=(t^2 +αt+β)(t^2 +γt+δ)  α=((1+(√(5+4(√2))))/2)  β=((1+(√2))/2)+(((√(5+4(√2)))+(√(−35+28(√2))))/8)  γ=((1−(√(5+4(√2))))/2)  δ=((1+(√2))/2)−(((√(5+4(√2)))+(√(−35+28(√2))))/8)  I′m too tired now    −(1/4)∫(((2x+1)(√(x^2 −1)))/(2x^2 +x+1))dx=       [t=x+(√(x^2 −1)) → dx=((√(x^2 −1))/(x+(√(x^2 −1))))]  =−(1/8)∫(((t^2 −1)^2 (t^2 +t+1))/(t^2 (t^4 +t^3 +4t^2 +t+1)))dt  again to decompose  t^4 +t^3 +4t^2 +t+1=(t^2 +at+b)(t^2 +ct+d)  a=((1+(√(−11+8(√2))))/2)  b=((1+2(√2))/2)+(((√(−11+8(√2)))+(√(77+56(√2))))/8)  c=((1−(√(−11+8(√2))))/2)  d=((1+2(√2))/2)−(((√(−11+8(√2)))+(√(77+56(√2))))/8)  please continue if you need it, I go to bed...
dx(x+1)x21+(x1)x2+1==(x+1)x21(x1)x2+12(x1)(2x2+x+1)dx==14x21x1dx12x2+12x2+x+1dx14(2x+1)x212x2+x+1dx14x21x1dx=()[t=x+x21dx=x21x+x21dt]=18(t+1)2t2dt=t218t+14lnt==14x21+14ln(x+x21)12x2+12x2+x+1dx=[t=x+x2+1dx=x2+1x+x2+1]=14(t2+1)2t(t4+t3t+1)dtnowwemustdecomposet4+t3t+1=(t2+αt+β)(t2+γt+δ)α=1+5+422β=1+22+5+42+35+2828γ=15+422δ=1+225+42+35+2828Imtootirednow14(2x+1)x212x2+x+1dx=[t=x+x21dx=x21x+x21]=18(t21)2(t2+t+1)t2(t4+t3+4t2+t+1)dtagaintodecomposet4+t3+4t2+t+1=(t2+at+b)(t2+ct+d)a=1+11+822b=1+222+11+82+77+5628c=111+822d=1+22211+82+77+5628pleasecontinueifyouneedit,Igotobed
Commented by Dwaipayan Shikari last updated on 16/Sep/20
(1/4)∫(√((x+1)/(x−1)))  (1/4)∫((x+1)/( (√(x^2 −1))))=(1/8)∫((2x)/( (√(x^2 −1))))+(1/4)∫(1/( (√(x^2 −1))))=(1/4)(√(x^2 −1))+(1/4)log(x+(√(x^2 −1)))
14x+1x114x+1x21=182xx21+141x21=14x21+14log(x+x21)
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *