find-dx-x-1-x-2-1-x-1-x-2-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 113628 by mathmax by abdo last updated on 14/Sep/20 find∫dx(x+1)x2−1+(x−1)x2+1 Answered by MJS_new last updated on 16/Sep/20 ∫dx(x+1)x2−1+(x−1)x2+1==∫(x+1)x2−1−(x−1)x2+12(x−1)(2x2+x+1)dx==14∫x2−1x−1dx−12∫x2+12x2+x+1dx−14∫(2x+1)x2−12x2+x+1dx14∫x2−1x−1dx=()[t=x+x2−1→dx=x2−1x+x2−1dt]=18∫(t+1)2t2dt=t2−18t+14lnt==14x2−1+14ln(x+x2−1)−12∫x2+12x2+x+1dx=[t=x+x2+1→dx=x2+1x+x2+1]=−14∫(t2+1)2t(t4+t3−t+1)dtnowwemustdecomposet4+t3−t+1=(t2+αt+β)(t2+γt+δ)α=1+5+422β=1+22+5+42+−35+2828γ=1−5+422δ=1+22−5+42+−35+2828I′mtootirednow−14∫(2x+1)x2−12x2+x+1dx=[t=x+x2−1→dx=x2−1x+x2−1]=−18∫(t2−1)2(t2+t+1)t2(t4+t3+4t2+t+1)dtagaintodecomposet4+t3+4t2+t+1=(t2+at+b)(t2+ct+d)a=1+−11+822b=1+222+−11+82+77+5628c=1−−11+822d=1+222−−11+82+77+5628pleasecontinueifyouneedit,Igotobed… Commented by Dwaipayan Shikari last updated on 16/Sep/20 14∫x+1x−114∫x+1x2−1=18∫2xx2−1+14∫1x2−1=14x2−1+14log(x+x2−1) Commented by Tawa11 last updated on 06/Sep/21 greatsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-48091Next Next post: explicit-g-a-0-pi-4-ln-1-acos-2-d- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.