Menu Close

find-dx-x-1-x-2-and-calculate-1-3-dx-x-1-x-2-




Question Number 26397 by abdo imad last updated on 25/Dec/17
find ∫  (dx/(x(√(1+x^2 )))) and calculate  ∫_1 ^3  (dx/(x(√(1+x^2 ))))
finddxx1+x2andcalculate13dxx1+x2
Commented by abdo imad last updated on 26/Dec/17
let use the changement x=tanθ  ∫  (dx/(x (√(1+x^2 ))))=    ∫    (((1+tan^2 θ)dθ)/(tanθ (√(1+tan^2 ))))dθ= ∫ ((√(1+tan^2 θ))/(tanθ))dθ  =  ∫     (1/(cosθ tanθ))dθ=  ∫  (dθ/(sinθ ))   and by thechangement tan(θ/2)=t  I= ∫  ((2dt)/(1+t^2 ))(((2t)/(1+t^2 )))^(−1)   = ∫dt/t=ln/t/=ln/tan(((arctanx)/2) )/ ln  ⇒   ∫  (dx/(x(√(1+x^2 ))))=ln/tan(((arctanx)/2) )/ +k  ∫_1 ^3  (dx/(x(√(1+x^2 ))))  = ln/tan(2^(−1) arctan3) /−ln/tan(2^(−1) arctan1)/  ==ln/tan(((arctan3)/2))/  −ln/tan((π/8))/ .
letusethechangementx=tanθdxx1+x2=(1+tan2θ)dθtanθ1+tan2dθ=1+tan2θtanθdθ=1cosθtanθdθ=dθsinθandbythechangementtan(θ/2)=tI=2dt1+t2(2t1+t2)1=dt/t=ln/t/=ln/tan(arctanx2)/lndxx1+x2=ln/tan(arctanx2)/+k13dxx1+x2=ln/tan(21arctan3)/ln/tan(21arctan1)/==ln/tan(arctan32)/ln/tan(π8)/.
Answered by $@ty@m last updated on 25/Dec/17
x=tan y  dx=sec^2 ydy  I=∫((sec^2 ydy)/(tan y.sec y))  =∫cosec ydy  =ln ∣cosec y−cot y∣+C  =ln ∣cosec (tan^(−1) x)−cot (tan^(−1) x)∣+C
x=tanydx=sec2ydyI=sec2ydytany.secy=cosecydy=lncosecycoty+C=lncosec(tan1x)cot(tan1x)+C
Answered by $@ty@m last updated on 25/Dec/17
Another method:  Let x=(1/t)  dx=−(1/t^2 )dt  ∫((−(1/t^2 )dt)/((1/t)(√(1+(1/t^2 )))))  ∫((−(1/t^2 )dt)/((1/t^2 )(√(t^2 +1))))  =∫((−dt)/( (√(1+t^2 ))))  =−ln ∣t+(√(1+t^2 ))∣+C  =−ln ∣(1/x)+(√(1+(1/x^2 )))∣+C  =−ln ∣((1+(√(1+x^2 )))/x)∣+C  =ln ∣(x/(1+(√(1+x^2 ))))∣+C
Anothermethod:Letx=1tdx=1t2dt1t2dt1t1+1t21t2dt1t2t2+1=dt1+t2=lnt+1+t2+C=ln1x+1+1x2+C=ln1+1+x2x+C=lnx1+1+x2+C

Leave a Reply

Your email address will not be published. Required fields are marked *