Menu Close

find-dx-x-2-1-1-x-2-




Question Number 42791 by maxmathsup by imad last updated on 02/Sep/18
find  ∫    (dx/((x^(2 ) +1)(√(1+x^2 ))))
finddx(x2+1)1+x2
Answered by MJS last updated on 02/Sep/18
I know this because of the hyperbola formuls  y=(√(x^2 +1))  y′=(x/( (√(x^2 +1))))  y′′=(1/((x^2 +1)^(3/2) ))  ⇒ ∫(dx/((x^2 +1)(√(x^2 +1))))=∫(dx/((x^2 +1)^(3/2) ))=(x/( (√(x^2 +1))))+C
Iknowthisbecauseofthehyperbolaformulsy=x2+1y=xx2+1y=1(x2+1)32dx(x2+1)x2+1=dx(x2+1)32=xx2+1+C
Commented by math khazana by abdo last updated on 03/Sep/18
thank you sir.
thankyousir.
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18
x=tanα   dx=sec^2 α dα  ∫((sec^2 αdα)/((sec^2 α)^(3/2) ))  ∫cosαdα  sinα+c  =(x/( (√(1+x^2 ))))+c
x=tanαdx=sec2αdαsec2αdα(sec2α)32cosαdαsinα+c=x1+x2+c

Leave a Reply

Your email address will not be published. Required fields are marked *