Question Number 87995 by abdomathmax last updated on 07/Apr/20
$${find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} \:+\mathrm{2}\right)} \\ $$
Answered by redmiiuser last updated on 08/Apr/20
$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{1}}={t} \\ $$$$\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}\:} \:}=−{dt} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}=\frac{\mathrm{1}}{{t}}+\mathrm{3}=\frac{\mathrm{1}+\mathrm{3}{t}}{{t}} \\ $$$$\int\frac{−{t}.{dt}}{\mathrm{1}+\mathrm{3}{t}} \\ $$$$\mathrm{1}+\mathrm{3}{t}={z} \\ $$$$\mathrm{3}.{dt}={dz} \\ $$$$\frac{−\mathrm{1}}{\mathrm{3}}\int\frac{\left({z}−\mathrm{1}\right).{dz}}{\mathrm{3}.{z}} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{9}}\left[\int{dz}−\int\frac{{dz}}{{z}}\right] \\ $$$$=\frac{−\mathrm{1}}{\mathrm{9}}\left[{z}−{lnz}\right]+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\left[\mathrm{ln}\:{z}−{z}\right]+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\left[\mathrm{ln}\:\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}}\right)−\frac{{x}^{\mathrm{2}} +\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}}\right]+{c} \\ $$