Menu Close

find-dx-x-2-2x-4-3-




Question Number 93873 by mathmax by abdo last updated on 15/May/20
find ∫_(−∞) ^∞    (dx/((x^2 +2x+4)^3 ))
finddx(x2+2x+4)3
Commented by mathmax by abdo last updated on 16/May/20
I =∫_(−∞) ^(+∞)  (dx/((x^2  +2x+4)^3 )) ⇒ I =∫_(−∞) ^(+∞)  (dx/(((x+1)^2  +3)^3 ))  =_(x+1 =(√3)t)     ∫_(−∞) ^(+∞)  (((√3)dt)/(27(t^2  +1)^3 )) =((√3)/(27)) ∫_(−∞) ^(+∞)  (dt/((t^2  +1)^3 ))  let ϕ(z) =(1/((z^2  +1)^3 )) ⇒ϕ(z) =(1/((z−i)^3 (z+i)^3 )) so the poles of ϕ are  i and −i  (triples)and ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)    (1/((3−1)!)){(z−i)^3  ϕ(z)}^((2))   =(1/2)lim_(z→i)    {(z+i)^(−3) }^((2))  =(1/2)lim_(z→i)   {−3(z+i)^(−4) }^((1))   =(1/2)lim_(z→i)    12 (z+i)^(−5)  =6 (2i)^(−5)  =(6/((2i)^5 )) =(6/(32 i)) =(3/(16i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(3/(16i)) =((3π)/8) ⇒ I =((√3)/(27))×((3π)/8) =((π(√3))/(72))  ★ I = ((π(√3))/(72))★
I=+dx(x2+2x+4)3I=+dx((x+1)2+3)3=x+1=3t+3dt27(t2+1)3=327+dt(t2+1)3letφ(z)=1(z2+1)3φ(z)=1(zi)3(z+i)3sothepolesofφareiandi(triples)and+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(31)!{(zi)3φ(z)}(2)=12limzi{(z+i)3}(2)=12limzi{3(z+i)4}(1)=12limzi12(z+i)5=6(2i)5=6(2i)5=632i=316i+φ(z)dz=2iπ×316i=3π8I=327×3π8=π372I=π372
Answered by Ar Brandon last updated on 15/May/20
L_n =∫((Ax+B)/((x^2 +px+q)^n ))dx⇒L_n =(B−((Ap)/2))∫_(−∞) ^(+∞) (1/([(x+(p/2))^2 +((√(q−(p^2 /4))))^2 ]^n ))dx  A=0, B=1, p=2, q=4, n=3  ⇒L_3 =∫_(−∞) ^(+∞) (dx/((x^2 +2x+4)^3 ))=∫_(−∞) ^(+∞) (dx/([(x+1)^2 +((√3))^2 ]^3 ))  J_n =∫_(−∞) ^(+∞) (1/([x^2 +u^2 ]^n ))dx⇒J_n =((2n−3)/(2u^2 (n−1)))J_(n−1)   J_1 =∫_(−∞) ^(+∞) (dx/((x+1)^2 +((√3))^2 ))=((√3)/3)⌊tan^(−1) [((x+1)/( (√3)))]⌋_(−∞) ^(+∞) =((π(√3))/3)  J_2 =((π(√3))/(18))⇒J_3 =(3/(12))∙((π(√3))/(18))=((π(√3))/(72))  ∫_(−∞) ^(+∞) (dx/((x^2 +2x+4)^3 ))=((π(√3))/(72))
Ln=Ax+B(x2+px+q)ndxLn=(BAp2)+1[(x+p2)2+(qp24)2]ndxA=0,B=1,p=2,q=4,n=3L3=+dx(x2+2x+4)3=+dx[(x+1)2+(3)2]3Jn=+1[x2+u2]ndxJn=2n32u2(n1)Jn1J1=+dx(x+1)2+(3)2=33tan1[x+13]+=π33J2=π318J3=312π318=π372+dx(x2+2x+4)3=π372
Commented by Ar Brandon last updated on 15/May/20
In case of necessity please check my solution to Q.93639 for Ln and Jn ��
Commented by mathmax by abdo last updated on 16/May/20
thank you sir .
thankyousir.
Commented by Ar Brandon last updated on 16/May/20
cheers ��

Leave a Reply

Your email address will not be published. Required fields are marked *