Menu Close

find-dx-x-2-a-with-a-C-




Question Number 34237 by abdo mathsup 649 cc last updated on 03/May/18
find  ∫   (dx/(x^2  −a))  with a ∈ C .
finddxx2awithaC.
Commented by Joel578 last updated on 04/May/18
thank you for correction Sir
thankyouforcorrectionSir
Commented by abdo mathsup 649 cc last updated on 04/May/18
let put (√a)=α +iβ   with (α,β) ∈ R^2   I  = (1/(2(√a)))∫  ( (1/(x−(√a))) −(1/(x+(√a))))dx  = (1/(2(α+iβ)))  ( ∫   (dx/(x−(√a)))  − ∫   (dx/(x+(√a)))) but  ∫   (dx/(x−(√a))) = ∫    (dx/(x−α −iβ))  = ∫    ((x−α +i β)/((x−α)^2  +β^2 ))dx = ∫    ((x−α)/((x−α)^2  +β^2 ))dx  +iβ ∫    (dx/((x−α)^2  +β^2 ))  but we have  ∫    ((x−α)/((x −α)^2  +β^2 ))dx = (1/2)ln( (x−α)^2  +β^2 ) +c_1   changement  x−α=βt  give  ∫      (dx/((x−α)^2  +β^2 )) = ∫    ((βdt)/(β^2 (1+t^2 ))) =(1/β) arctant +c_2   ⇒ ∫    (dx/(x−(√a)))  = (1/2)ln((x−α)^2  +β^2 )  +i arctant +λ  we folow the same method to find   ∫    (dx/(x +(√a)))  ...
letputa=α+iβwith(α,β)R2I=12a(1xa1x+a)dx=12(α+iβ)(dxxadxx+a)butdxxa=dxxαiβ=xα+iβ(xα)2+β2dx=xα(xα)2+β2dx+iβdx(xα)2+β2butwehavexα(xα)2+β2dx=12ln((xα)2+β2)+c1changementxα=βtgivedx(xα)2+β2=βdtβ2(1+t2)=1βarctant+c2dxxa=12ln((xα)2+β2)+iarctant+λwefolowthesamemethodtofinddxx+a
Commented by math khazana by abdo last updated on 04/May/18
∫      (dx/((x−α)^2  +β^2 )) =(1/β) arctan(((x−α)/β)) +c_2   ⇒  ∫     (dx/(x−(√a))) = (1/2)ln((x−α)^2  +β^2 ) +i arctan(((x−α)/β)) +c
dx(xα)2+β2=1βarctan(xαβ)+c2dxxa=12ln((xα)2+β2)+iarctan(xαβ)+c
Commented by abdo mathsup 649 cc last updated on 04/May/18
nvermind sir joel.
nvermindsirjoel.

Leave a Reply

Your email address will not be published. Required fields are marked *