Menu Close

find-dx-x-2-x-2-x-2-x-2-




Question Number 144216 by Mathspace last updated on 23/Jun/21
find ∫   (dx/( (√(x^2 +x+2))+(√(x^2 −x+2))))
$${find}\:\int\:\:\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{2}}+\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{2}}} \\ $$
Answered by bemath last updated on 23/Jun/21
(1/( (√(x^2 +x+2))+(√(x^2 −x+2)))) = (((√(x^2 +x+2))−(√(x^2 −x+2)))/(2x))  I=∫ ((√(x^2 +x+2))/(2x)) dx−∫ ((√(x^2 −x+2))/(2x)) dx
$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{2}}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{2}}}\:=\:\frac{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{2}}−\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{2}}}{\mathrm{2x}} \\ $$$$\mathrm{I}=\int\:\frac{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{2}}}{\mathrm{2x}}\:\mathrm{dx}−\int\:\frac{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{2}}}{\mathrm{2x}}\:\mathrm{dx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *