Menu Close

find-dx-x-e-x-




Question Number 160349 by mr W last updated on 28/Nov/21
find ∫(dx/(x+e^x ))=?
finddxx+ex=?
Answered by mathmax by abdo last updated on 28/Nov/21
∫  (dx/(x+e^x ))=∫  (e^(−x) /(1+xe^(−x) ))dx =∫ e^(−x) Σ_(n=0) ^∞ (−1)^n  x^n  e^(−nx) dx  if ∣x∣<1  =Σ_(n=0) ^∞  (−1)^n  ∫ x^n  e^(−(n+1)x) dx  =_((n+1)x=t) Σ_(n=0) ^∞ (−1)^n  ∫ (t^n /((n+1)^n ))e^(−t)  (dt/((n+1)))  =Σ_(n=0) ^(∞ )  (((−1)^n )/((n+1)^(n+1) )) ∫ t^n  e^(−t)  dt  =Γ_(inc) (n+1).Σ_(n=0) ^∞  (((−1)^n )/((n+1)^(n+1) ))
dxx+ex=ex1+xexdx=exn=0(1)nxnenxdxifx∣<1=n=0(1)nxne(n+1)xdx=(n+1)x=tn=0(1)ntn(n+1)netdt(n+1)=n=0(1)n(n+1)n+1tnetdt=Γinc(n+1).n=0(1)n(n+1)n+1
Commented by mr W last updated on 29/Nov/21
thanks sir!  Γ_(inc) (n+1) seems to be dependent from  n. but how can you take it out of the  summation about n and treat it as  independent from n?
thankssir!Γinc(n+1)seemstobedependentfromn.buthowcanyoutakeitoutofthesummationaboutnandtreatitasindependentfromn?

Leave a Reply

Your email address will not be published. Required fields are marked *