Menu Close

find-dx-x-n-x-1-m-m-and-n-integr-




Question Number 95586 by turbo msup by abdo last updated on 26/May/20
find ∫  (dx/(x^n (x+1)^m ))    m and n integr
finddxxn(x+1)mmandnintegr
Commented by Tony Lin last updated on 26/May/20
let u=(x/(x+1)), dx=(x+1)^2 du  x=(u/(1−u))   ∫(1/(((u/(1−u)))^n ((1/(1−u)))^(m−2) ))du  =∫(((1−(x/(x+1)))^(n+m−2) )/(((x/(x+1)))^n ))d((x/(x+1)))  =C_(n−1) ^(n+m−2) (−1)^(n−1) ln∣(x/(x+1))∣  +Σ_(k=0) ^(n−2) C_k ^(n+m−2) (−1)^(k+1) (1/((n+k−1)((x/(x+1)))^(u+k−1) ))  +Σ_(k=0) ^(m−2) C_(n+k) ^(n+m−2) (−1)^(n+k) ((((x/(x+1)))^(k+1) )/(k+1))  +c
letu=xx+1,dx=(x+1)2dux=u1u1(u1u)n(11u)m2du=(1xx+1)n+m2(xx+1)nd(xx+1)=Cn1n+m2(1)n1lnxx+1+n2k=0Ckn+m2(1)k+11(n+k1)(xx+1)u+k1+m2k=0Cn+kn+m2(1)n+k(xx+1)k+1k+1+c
Answered by mathmax by abdo last updated on 26/May/20
I =∫  (dx/(x^n (x+1)^m )) ⇒ I =∫  (dx/(((x/(x+1)))^n (x+1)^(m+n) ))    we do the changement (x/(x+1)) =t ⇒x =tx +t ⇒(1−t)x =t  ⇒x =(t/(1−t)) ⇒(dx/dt) =((1−t−t(−1))/((1−t)^2 )) =(1/((1−t)^2 )) and x+1 =(t/(1−t))+1=(1/(1−t))  I = ∫  (dt/((1−t)^2 t^n ((1/(1−t)))^(m+n) )) =∫  (((1−t)^(m+n) )/((1−t)^2  t^n ))dt  =∫   (((1−t)^(m+n−2) )/t^n ) dt  =(−1)^(m+n−2)  ∫  (((t−1)^(m+n−2) )/t^n )dt  =(−1)^(m+n−2)  ∫ ((Σ_(k=0) ^(m+n−2)  C_(m+n−2) ^k  t^k )/t^n )dt  =(−1)^(m+n−2)  Σ_(k=0) ^(m+n−2)  C_(m+n−2) ^k  ∫ t^(k−n) dt  =(−1)^(m+n−2)  Σ_(k=0 and k≠n−1) ^(m+n−2)  C_(m+n−2) ^k   (1/(k−n+1)) t^(k−n+1)   +(−1)^(m+n−2)  C_(m+n−2) ^(n−1)  ln∣t∣ +C  ⇒I =(−1)^(m+n−2)  Σ_(k=0 and k≠n−1) ^(m+n−2)  C_(m+n−2) ^k  (1/(k−n+1))((x/(x+1)))^(k−n+1)   +(−1)^(m+n−2)  C_(m+n−2) ^(n−1)  ln∣(x/(x+1))∣ +C
I=dxxn(x+1)mI=dx(xx+1)n(x+1)m+nwedothechangementxx+1=tx=tx+t(1t)x=tx=t1tdxdt=1tt(1)(1t)2=1(1t)2andx+1=t1t+1=11tI=dt(1t)2tn(11t)m+n=(1t)m+n(1t)2tndt=(1t)m+n2tndt=(1)m+n2(t1)m+n2tndt=(1)m+n2k=0m+n2Cm+n2ktktndt=(1)m+n2k=0m+n2Cm+n2ktkndt=(1)m+n2k=0andkn1m+n2Cm+n2k1kn+1tkn+1+(1)m+n2Cm+n2n1lnt+CI=(1)m+n2k=0andkn1m+n2Cm+n2k1kn+1(xx+1)kn+1+(1)m+n2Cm+n2n1lnxx+1+C

Leave a Reply

Your email address will not be published. Required fields are marked *