find-dx-x-n-x-1-m-m-and-n-integr- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 95586 by turbo msup by abdo last updated on 26/May/20 find∫dxxn(x+1)mmandnintegr Commented by Tony Lin last updated on 26/May/20 letu=xx+1,dx=(x+1)2dux=u1−u∫1(u1−u)n(11−u)m−2du=∫(1−xx+1)n+m−2(xx+1)nd(xx+1)=Cn−1n+m−2(−1)n−1ln∣xx+1∣+∑n−2k=0Ckn+m−2(−1)k+11(n+k−1)(xx+1)u+k−1+∑m−2k=0Cn+kn+m−2(−1)n+k(xx+1)k+1k+1+c Answered by mathmax by abdo last updated on 26/May/20 I=∫dxxn(x+1)m⇒I=∫dx(xx+1)n(x+1)m+nwedothechangementxx+1=t⇒x=tx+t⇒(1−t)x=t⇒x=t1−t⇒dxdt=1−t−t(−1)(1−t)2=1(1−t)2andx+1=t1−t+1=11−tI=∫dt(1−t)2tn(11−t)m+n=∫(1−t)m+n(1−t)2tndt=∫(1−t)m+n−2tndt=(−1)m+n−2∫(t−1)m+n−2tndt=(−1)m+n−2∫∑k=0m+n−2Cm+n−2ktktndt=(−1)m+n−2∑k=0m+n−2Cm+n−2k∫tk−ndt=(−1)m+n−2∑k=0andk≠n−1m+n−2Cm+n−2k1k−n+1tk−n+1+(−1)m+n−2Cm+n−2n−1ln∣t∣+C⇒I=(−1)m+n−2∑k=0andk≠n−1m+n−2Cm+n−2k1k−n+1(xx+1)k−n+1+(−1)m+n−2Cm+n−2n−1ln∣xx+1∣+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-1-dx-x-3-2x-1-4-1-without-use-of-decomposition-2-by-use-of-decomposition-Next Next post: Question-30054 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.