Menu Close

Find-dy-dx-from-first-principle-if-y-sin-2-x-




Question Number 59720 by Tawa1 last updated on 13/May/19
Find  (dy/dx)  from first principle,  if    y = sin^2 (x)
Finddydxfromfirstprinciple,ify=sin2(x)
Commented by maxmathsup by imad last updated on 14/May/19
(dy/dx) =2sinx cosx  =sin(2x).
dydx=2sinxcosx=sin(2x).
Answered by tanmay last updated on 14/May/19
y=sin^2 x  y+△y=sin^2 (x+△x)  △y=sin^2 (x+△x)−sin^2 x  △y=[sin(x+△x)+sinx]×[sin(x+△x)−sinx]  △y=2sin(((x+△x+x)/2))×cos(((△x)/2))×2cos(((x+△x+x)/2))sin(((△x)/2))  △y=2sin(2x+△x)cos(((△x)/2))sin(((△x)/2))  (dy/dx)=lim_(△x→0)    ((△y)/(△x))  =lim_(△x→0)    ((2sin(2x+△x)cos(((△x)/2))×sin(((△x)/2)))/(△x))  =lim_(△x→0)    sin(2x+△x)cos(((△x)/2))×((sin(((△x)/2)))/((△x)/2))  =sin(2x)   [lim_(△x→0)  cos(((△x)/2))=1   and lim_(△x→0)  ((sin(((△x)/2)))/((△x)/2))=1]
y=sin2xy+y=sin2(x+x)y=sin2(x+x)sin2xy=[sin(x+x)+sinx]×[sin(x+x)sinx]y=2sin(x+x+x2)×cos(x2)×2cos(x+x+x2)sin(x2)y=2sin(2x+x)cos(x2)sin(x2)dydx=limx0yx=limx02sin(2x+x)cos(x2)×sin(x2)x=limx0sin(2x+x)cos(x2)×sin(x2)x2=sin(2x)[limx0cos(x2)=1andlimx0sin(x2)x2=1]
Commented by Tawa1 last updated on 14/May/19
God bless you sir
Godblessyousir
Commented by tanmay last updated on 14/May/19
thank you...
thankyou
Answered by Kunal12588 last updated on 14/May/19
y=sin^2 x  ⇒Δy=sin^2 (x+Δx)−sin^2 x  ⇒Δy=((1−cos(2x+2Δx))/2)−((1−cos(2x))/2)  [∵ cos 2θ =1−2sin^2 θ ⇒ sin^2 θ=((1−cos 2θ)/2) ]  ⇒Δy=((cos (2x) − cos (2x+2Δx))/2)  ⇒Δy=((2sin((4x+2Δx)/2)sin((2Δx)/2))/2)  ⇒((Δy)/(Δx))=((sin(2x+Δx)sinΔx)/(Δx))  ⇒lim_(Δx→0)  ((Δy)/(Δx)) = lim_(Δx→0)  {sin(2x+Δx) ((sinΔx)/(Δx))}  ⇒(dy/dx)=sin (2x)
y=sin2xΔy=sin2(x+Δx)sin2xΔy=1cos(2x+2Δx)21cos(2x)2[cos2θ=12sin2θsin2θ=1cos2θ2]Δy=cos(2x)cos(2x+2Δx)2Δy=2sin4x+2Δx2sin2Δx22ΔyΔx=sin(2x+Δx)sinΔxΔxlimΔx0ΔyΔx=limΔx0{sin(2x+Δx)sinΔxΔx}dydx=sin(2x)
Commented by Tawa1 last updated on 19/May/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *