Question Number 59720 by Tawa1 last updated on 13/May/19

Commented by maxmathsup by imad last updated on 14/May/19

Answered by tanmay last updated on 14/May/19
![y=sin^2 x y+△y=sin^2 (x+△x) △y=sin^2 (x+△x)−sin^2 x △y=[sin(x+△x)+sinx]×[sin(x+△x)−sinx] △y=2sin(((x+△x+x)/2))×cos(((△x)/2))×2cos(((x+△x+x)/2))sin(((△x)/2)) △y=2sin(2x+△x)cos(((△x)/2))sin(((△x)/2)) (dy/dx)=lim_(△x→0) ((△y)/(△x)) =lim_(△x→0) ((2sin(2x+△x)cos(((△x)/2))×sin(((△x)/2)))/(△x)) =lim_(△x→0) sin(2x+△x)cos(((△x)/2))×((sin(((△x)/2)))/((△x)/2)) =sin(2x) [lim_(△x→0) cos(((△x)/2))=1 and lim_(△x→0) ((sin(((△x)/2)))/((△x)/2))=1]](https://www.tinkutara.com/question/Q59737.png)
Commented by Tawa1 last updated on 14/May/19

Commented by tanmay last updated on 14/May/19

Answered by Kunal12588 last updated on 14/May/19
![y=sin^2 x ⇒Δy=sin^2 (x+Δx)−sin^2 x ⇒Δy=((1−cos(2x+2Δx))/2)−((1−cos(2x))/2) [∵ cos 2θ =1−2sin^2 θ ⇒ sin^2 θ=((1−cos 2θ)/2) ] ⇒Δy=((cos (2x) − cos (2x+2Δx))/2) ⇒Δy=((2sin((4x+2Δx)/2)sin((2Δx)/2))/2) ⇒((Δy)/(Δx))=((sin(2x+Δx)sinΔx)/(Δx)) ⇒lim_(Δx→0) ((Δy)/(Δx)) = lim_(Δx→0) {sin(2x+Δx) ((sinΔx)/(Δx))} ⇒(dy/dx)=sin (2x)](https://www.tinkutara.com/question/Q59760.png)
Commented by Tawa1 last updated on 19/May/19
