Menu Close

find-dy-dx-if-x-2-y-2-4-




Question Number 129727 by abdurehime last updated on 18/Jan/21
find    (dy/dx) if   x^2 +y^2 =4
$$\mathrm{find}\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\mathrm{if}\:\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{4} \\ $$
Answered by Ar Brandon last updated on 18/Jan/21
y=±(√(4−x^2 ))  2x+2y(dy/dx)=0 ⇒ (dy/dx)=−(x/y)  (dy/dx)=∓(x/( (√(4−x^2 ))))
$$\mathrm{y}=\pm\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{2x}+\mathrm{2y}\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{0}\:\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}=−\frac{\mathrm{x}}{\mathrm{y}} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\mp\frac{\mathrm{x}}{\:\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }} \\ $$
Answered by Adel last updated on 18/Jan/21
2x+2y(dy/dx)=0⇒(dy/dx)=−(x/y)  danish
$$\mathrm{2x}+\mathrm{2y}\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{0}\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}=−\frac{\mathrm{x}}{\mathrm{y}} \\ $$$$\boldsymbol{{danish}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *