Menu Close

find-e-2-dt-tln-t-ln-ln-t-




Question Number 40156 by maxmathsup by imad last updated on 16/Jul/18
find   ∫_e^2  ^(+∞)     (dt/(tln(t)ln(ln(t)))
finde2+dttln(t)ln(ln(t)
Commented by maxmathsup by imad last updated on 21/Jul/18
let I = ∫_e^2  ^(+∞)     (dt/(tln(t)ln(ln(t))))  changement ln(ln(t))=x give  dx=(1/(tln(t))) dt ⇒(1/(tln(t))) =(dx/dt) ⇒  I = ∫_(ln(2)) ^(+∞)     (dx/x) =lim_(ξ→+∞)     ∫_(ln(2)) ^ξ  (dx/x) =lim_(ξ→+∞) [ln∣x∣]_(ln(2)) ^ξ =lim_(ξ→+∞) ln((ξ/(ln(2))))  =+∞  the ntegral is divergent .?  =
letI=e2+dttln(t)ln(ln(t))changementln(ln(t))=xgivedx=1tln(t)dt1tln(t)=dxdtI=ln(2)+dxx=limξ+ln(2)ξdxx=limξ+[lnx]ln(2)ξ=limξ+ln(ξln(2))=+thentegralisdivergent.?=
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jul/18
y=ln{ln(t)}  dy=(dt/(tlnt))  ∫_(ln2) ^∞ (dy/y)  ∣lny∣_(ln2) ^∞  =ln∞−ln(ln2)  pls chrck...
y=ln{ln(t)}dy=dttlntln2dyylnyln2=lnln(ln2)plschrck

Leave a Reply

Your email address will not be published. Required fields are marked *