Menu Close

find-e-jx-2-with-j-e-i-2pi-3-




Question Number 34296 by math khazana by abdo last updated on 03/May/18
find  ∫_(−∞) ^(+∞)   e^(−jx^2 )     with  j =e^(i((2π)/3))
find+ejx2withj=ei2π3
Commented by candre last updated on 04/May/18
j=cos ((2π)/3)+isin ((2π)/3)=−(1/2)+i((√3)/2)
j=cos2π3+isin2π3=12+i32
Commented by abdo mathsup 649 cc last updated on 04/May/18
we have j =cos(((2π)/3))+i sin(((2π)/3))=−(1/2) +i((√3)/2) ⇒  ∫_(−∞) ^(+∞)  e^(−jx^2 ) dx = ∫_(−∞) ^(+∞)    e^(−((√j)x)^2 ) dx   ch.(√j) x=t give  ∫_(−∞) ^(+∞)   e^(−jx^2 ) dx = ∫_(−∞) ^(+∞)   e^(−t^2 )  (dt/( (√j)))  =((√π)/( (√j)))  = ((√π)/e^(i(π/3)) ) = (√(π )) e^(−i(π/3)) =(√π)( cos((π/3))+isin((π/3)))  =(√π)( (1/2) +i((√3)/2)) ⇒  ∫_(−∞) ^(+∞)  e^(−jx^2 ) dx = ((√π)/2) +i((√(3π))/2)  .
wehavej=cos(2π3)+isin(2π3)=12+i32+ejx2dx=+e(jx)2dxch.jx=tgive+ejx2dx=+et2dtj=πj=πeiπ3=πeiπ3=π(cos(π3)+isin(π3))=π(12+i32)+ejx2dx=π2+i3π2.
Commented by abdo mathsup 649 cc last updated on 04/May/18
∫_(−∞) ^(+∞)  e^(−jx^2 ) dx =(√π)( cos((π/3))−i sin((π/3)))  =(√π)( (1/2) −i((√3)/2)) ⇒  ∫_(−∞ ) ^(+∞)  e^(−jx^2 ) dx = ((√π)/2)  −i((√(3π))/2)
+ejx2dx=π(cos(π3)isin(π3))=π(12i32)+ejx2dx=π2i3π2

Leave a Reply

Your email address will not be published. Required fields are marked *