Menu Close

find-e-tanx-cos-2-x-dx-




Question Number 36441 by prof Abdo imad last updated on 02/Jun/18
find  ∫   (e^(tanx) /(cos^2 x))dx
$${find}\:\:\int\:\:\:\frac{{e}^{{tanx}} }{{cos}^{\mathrm{2}} {x}}{dx} \\ $$
Commented by prof Abdo imad last updated on 03/Jun/18
changement  tanx =t give  I = ∫  (e^t /(1/(1+t^2 ))) (dt/(1+t^2 )) = ∫ e^t  dt  =e^t  +c⇒  I = e^(tan(x))  +c .
$${changement}\:\:{tanx}\:={t}\:{give} \\ $$$${I}\:=\:\int\:\:\frac{{e}^{{t}} }{\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\int\:{e}^{{t}} \:{dt}\:\:={e}^{{t}} \:+{c}\Rightarrow \\ $$$${I}\:=\:{e}^{{tan}\left({x}\right)} \:+{c}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
t=tanx   dt=sec^2 xdx  ∫e^t dt=e^t +c  =e^(tanx) +c
$${t}={tanx}\:\:\:{dt}={sec}^{\mathrm{2}} {xdx} \\ $$$$\int{e}^{{t}} {dt}={e}^{{t}} +{c} \\ $$$$={e}^{{tanx}} +{c} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *