Menu Close

find-e-z-t-2-dt-with-z-r-e-i-C-




Question Number 34297 by math khazana by abdo last updated on 03/May/18
find  ∫_(−∞) ^(+∞)   e^(−z t^2 ) dt   with z=r e^(iθ)   ∈ C .
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{z}\:{t}^{\mathrm{2}} } {dt}\:\:\:{with}\:{z}={r}\:{e}^{{i}\theta} \:\:\in\:{C}\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 04/May/18
let put I =∫_(−∞) ^(+∞)  e^(−zt^2 ) dt ⇒ I = ∫_(−∞) ^(+∞)   e^(−re^(iθ) t^2 ) dt  I = ∫_(−∞) ^(+∞)    e^(−((√r) e^(i(θ/2))  t)^2 ) dt   changement (√r)  e^(i(θ/2))   t =u  give I  =  (1/( (√r))) e^(−i(θ/2))   ∫_(−∞) ^(++∞)   e^(−u^2 ) du  I = ((√π)/( (√r)))  e^(−i(θ/2)) = ((√π)/( (√r)))  ( cos((θ/2)) −i sin((θ/2)))  (r>0)
$${let}\:{put}\:{I}\:=\int_{−\infty} ^{+\infty} \:{e}^{−{zt}^{\mathrm{2}} } {dt}\:\Rightarrow\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{re}^{{i}\theta} {t}^{\mathrm{2}} } {dt} \\ $$$${I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{−\left(\sqrt{{r}}\:{e}^{{i}\frac{\theta}{\mathrm{2}}} \:{t}\right)^{\mathrm{2}} } {dt}\:\:\:{changement}\:\sqrt{{r}}\:\:{e}^{{i}\frac{\theta}{\mathrm{2}}} \:\:{t}\:={u} \\ $$$${give}\:{I}\:\:=\:\:\frac{\mathrm{1}}{\:\sqrt{{r}}}\:{e}^{−{i}\frac{\theta}{\mathrm{2}}} \:\:\int_{−\infty} ^{++\infty} \:\:{e}^{−{u}^{\mathrm{2}} } {du} \\ $$$${I}\:=\:\frac{\sqrt{\pi}}{\:\sqrt{{r}}}\:\:{e}^{−{i}\frac{\theta}{\mathrm{2}}} =\:\frac{\sqrt{\pi}}{\:\sqrt{{r}}}\:\:\left(\:{cos}\left(\frac{\theta}{\mathrm{2}}\right)\:−{i}\:{sin}\left(\frac{\theta}{\mathrm{2}}\right)\right)\:\:\left({r}>\mathrm{0}\right) \\ $$
Answered by candre last updated on 03/May/18
I=∫_(−∞) ^(+∞) e^(−zt^2 ) dt  I^2 =(∫_(−∞) ^(+∞) e^(−zt^2 ) dt)^2 =∫_(−∞) ^(+∞) e^(−zx^2 ) dx∫_(−∞) ^(+∞) e^(−zy^2 ) dy  =∫_(−∞) ^(+∞) ∫_(−∞) ^(+∞) e^(−z(x^2 +y^2 )) dxdy  (x,y)=ρ(cos ϕ,sin ϕ)  ((∂(x,y))/(∂(ρ,ϕ)))dρdϕ= determinant (((∂x/∂ρ),(∂y/∂ρ)),((∂x/∂ϕ),(∂y/∂ϕ)))dρdϕ= determinant (((cos ϕ),(sin ϕ)),((−ρsin ϕ),(ρcos ϕ)))dρdϕ  =ρdρdϕ  −∞<x<+∞,−∞<y<+∞≡0≤ρ<∞,0≤ϕ<2π  I^2 =∫_0 ^(2π) ∫_0 ^(+∞) e^(−zρ^2 ) ρdρdϕ  =∫_0 ^(2π) dϕ∫_0 ^∞ e^(−zρ^2 ) ρdρ  ∫_0 ^(2π) dϕ=2π  ∫_0 ^∞ e^(−zρ^2 ) ρdρ=(1/(2z))∫_(−∞) ^0 e^u du=(1/(2z))  u=−zρ^2   du=−2zρdρ  I^2 =(π/z)  I=(√(π/z))     (ℜ(z)>0)
$${I}=\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−{zt}^{\mathrm{2}} } {dt} \\ $$$${I}^{\mathrm{2}} =\left(\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−{zt}^{\mathrm{2}} } {dt}\right)^{\mathrm{2}} =\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−{zx}^{\mathrm{2}} } {dx}\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−{zy}^{\mathrm{2}} } {dy} \\ $$$$=\underset{−\infty} {\overset{+\infty} {\int}}\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−{z}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy} \\ $$$$\left({x},{y}\right)=\rho\left(\mathrm{cos}\:\varphi,\mathrm{sin}\:\varphi\right) \\ $$$$\frac{\partial\left({x},{y}\right)}{\partial\left(\rho,\varphi\right)}{d}\rho{d}\varphi=\begin{vmatrix}{\frac{\partial{x}}{\partial\rho}}&{\frac{\partial{y}}{\partial\rho}}\\{\frac{\partial{x}}{\partial\varphi}}&{\frac{\partial{y}}{\partial\varphi}}\end{vmatrix}{d}\rho{d}\varphi=\begin{vmatrix}{\mathrm{cos}\:\varphi}&{\mathrm{sin}\:\varphi}\\{−\rho\mathrm{sin}\:\varphi}&{\rho\mathrm{cos}\:\varphi}\end{vmatrix}{d}\rho{d}\varphi \\ $$$$=\rho{d}\rho{d}\varphi \\ $$$$−\infty<{x}<+\infty,−\infty<{y}<+\infty\equiv\mathrm{0}\leqslant\rho<\infty,\mathrm{0}\leqslant\varphi<\mathrm{2}\pi \\ $$$${I}^{\mathrm{2}} =\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\underset{\mathrm{0}} {\overset{+\infty} {\int}}{e}^{−{z}\rho^{\mathrm{2}} } \rho{d}\rho{d}\varphi \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}{d}\varphi\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{z}\rho^{\mathrm{2}} } \rho{d}\rho \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}{d}\varphi=\mathrm{2}\pi \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{z}\rho^{\mathrm{2}} } \rho{d}\rho=\frac{\mathrm{1}}{\mathrm{2}{z}}\underset{−\infty} {\overset{\mathrm{0}} {\int}}{e}^{{u}} {du}=\frac{\mathrm{1}}{\mathrm{2}{z}} \\ $$$${u}=−{z}\rho^{\mathrm{2}} \\ $$$${du}=−\mathrm{2}{z}\rho{d}\rho \\ $$$${I}^{\mathrm{2}} =\frac{\pi}{{z}} \\ $$$${I}=\sqrt{\frac{\pi}{{z}}}\:\:\:\:\:\left(\Re\left({z}\right)>\mathrm{0}\right) \\ $$
Commented by math khazana by abdo last updated on 04/May/18
your method is correct sir candart...thanks...
$${your}\:{method}\:{is}\:{correct}\:{sir}\:{candart}…{thanks}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *