Menu Close

find-e-z-t-2-dt-with-z-r-e-i-C-




Question Number 34297 by math khazana by abdo last updated on 03/May/18
find  ∫_(−∞) ^(+∞)   e^(−z t^2 ) dt   with z=r e^(iθ)   ∈ C .
find+ezt2dtwithz=reiθC.
Commented by abdo mathsup 649 cc last updated on 04/May/18
let put I =∫_(−∞) ^(+∞)  e^(−zt^2 ) dt ⇒ I = ∫_(−∞) ^(+∞)   e^(−re^(iθ) t^2 ) dt  I = ∫_(−∞) ^(+∞)    e^(−((√r) e^(i(θ/2))  t)^2 ) dt   changement (√r)  e^(i(θ/2))   t =u  give I  =  (1/( (√r))) e^(−i(θ/2))   ∫_(−∞) ^(++∞)   e^(−u^2 ) du  I = ((√π)/( (√r)))  e^(−i(θ/2)) = ((√π)/( (√r)))  ( cos((θ/2)) −i sin((θ/2)))  (r>0)
letputI=+ezt2dtI=+ereiθt2dtI=+e(reiθ2t)2dtchangementreiθ2t=ugiveI=1reiθ2++eu2duI=πreiθ2=πr(cos(θ2)isin(θ2))(r>0)
Answered by candre last updated on 03/May/18
I=∫_(−∞) ^(+∞) e^(−zt^2 ) dt  I^2 =(∫_(−∞) ^(+∞) e^(−zt^2 ) dt)^2 =∫_(−∞) ^(+∞) e^(−zx^2 ) dx∫_(−∞) ^(+∞) e^(−zy^2 ) dy  =∫_(−∞) ^(+∞) ∫_(−∞) ^(+∞) e^(−z(x^2 +y^2 )) dxdy  (x,y)=ρ(cos ϕ,sin ϕ)  ((∂(x,y))/(∂(ρ,ϕ)))dρdϕ= determinant (((∂x/∂ρ),(∂y/∂ρ)),((∂x/∂ϕ),(∂y/∂ϕ)))dρdϕ= determinant (((cos ϕ),(sin ϕ)),((−ρsin ϕ),(ρcos ϕ)))dρdϕ  =ρdρdϕ  −∞<x<+∞,−∞<y<+∞≡0≤ρ<∞,0≤ϕ<2π  I^2 =∫_0 ^(2π) ∫_0 ^(+∞) e^(−zρ^2 ) ρdρdϕ  =∫_0 ^(2π) dϕ∫_0 ^∞ e^(−zρ^2 ) ρdρ  ∫_0 ^(2π) dϕ=2π  ∫_0 ^∞ e^(−zρ^2 ) ρdρ=(1/(2z))∫_(−∞) ^0 e^u du=(1/(2z))  u=−zρ^2   du=−2zρdρ  I^2 =(π/z)  I=(√(π/z))     (ℜ(z)>0)
I=+ezt2dtI2=(+ezt2dt)2=+ezx2dx+ezy2dy=++ez(x2+y2)dxdy(x,y)=ρ(cosφ,sinφ)(x,y)(ρ,φ)dρdφ=|xρyρxφyφ|dρdφ=|cosφsinφρsinφρcosφ|dρdφ=ρdρdφ<x<+,<y<+0ρ<,0φ<2πI2=2π0+0ezρ2ρdρdφ=2π0dφ0ezρ2ρdρ2π0dφ=2π0ezρ2ρdρ=12z0eudu=12zu=zρ2du=2zρdρI2=πzI=πz((z)>0)
Commented by math khazana by abdo last updated on 04/May/18
your method is correct sir candart...thanks...
yourmethodiscorrectsircandartthanks

Leave a Reply

Your email address will not be published. Required fields are marked *