Menu Close

find-f-0-1-arctan-e-x-dx-with-0-




Question Number 37888 by abdo mathsup 649 cc last updated on 19/Jun/18
find f(α) = ∫_0 ^1   arctan(e^(−αx) )dx with α≥0
findf(α)=01arctan(eαx)dxwithα0
Commented by math khazana by abdo last updated on 21/Jun/18
we have f^′ (α)=∫_0 ^1  ((−x e^(−αx) )/(1+e^(−2αx) ))dx  = ∫_0 ^1  −x e^(−αx) { Σ_(n=0) ^∞  (−1)^n  e^(−2nαx) }  =Σ_(n=0) ^∞  (−1)^(n+1)   ∫_0 ^1  x e^(−(2n+1)αx) dx but  A_n =∫_0 ^1  x e^(−(2n+1)αx) dx=_((2n+1)αx=t)  ∫_0 ^((2n+1)α)  (t/((2n+1)α)) e^(−t)  (dt/((2n+1)α))  = (1/((2n+1)^2 α^2 )) ∫_0 ^((2n+1)α)   t .e^(−t) dt  and by parts  ∫_0 ^((2n+1)α)  t.e^(−t) dt =[−t e^(−t) ]_0 ^((2n+1)α)  +∫_0 ^((2n+1)α)  e^(−t) dt  =−(2n+1)α e^(−(2n+1)α)   +[−e^(−t) ]_0 ^((2n+1)α)   =−(2n+1)α e^(−(2n+1)α)  +(1−e^(−(2n+1)α) ) ⇒  A_n = (1/((2n+1)^2 α^2 )){ −(2n+1)α e^(−(2n+1)α)  +(1−e^(−(2n+1)α) )  =−(1/((2n+1)α)) e^(−(2n+1)α)    +((1−e^(−(2n+1)α) )/((2n+1)^2  α^2 ))  I =Σ_(n=0) ^∞   (((−1)^n )/((2n+1)α)) e^(−(2n+1)α)   +Σ_(n=0) ^∞ (−1)^n ((e^(−(2n+1)α)  −1)/((2n+1)^2  α^2 ))  ...be continued...
wehavef(α)=01xeαx1+e2αxdx=01xeαx{n=0(1)ne2nαx}=n=0(1)n+101xe(2n+1)αxdxbutAn=01xe(2n+1)αxdx=(2n+1)αx=t0(2n+1)αt(2n+1)αetdt(2n+1)α=1(2n+1)2α20(2n+1)αt.etdtandbyparts0(2n+1)αt.etdt=[tet]0(2n+1)α+0(2n+1)αetdt=(2n+1)αe(2n+1)α+[et]0(2n+1)α=(2n+1)αe(2n+1)α+(1e(2n+1)α)An=1(2n+1)2α2{(2n+1)αe(2n+1)α+(1e(2n+1)α)=1(2n+1)αe(2n+1)α+1e(2n+1)α(2n+1)2α2I=n=0(1)n(2n+1)αe(2n+1)α+n=0(1)ne(2n+1)α1(2n+1)2α2becontinued
Commented by math khazana by abdo last updated on 21/Jun/18
we have artan^′ (u)= (1/(1+u^2 )) =Σ_(n=0) ^∞  (−1)^n  u^(2n)  ⇒  arctan(u) = Σ_(n=0) ^∞   (((−1)^n )/(2n+1)) u^(2n+1)  +c  (c=0)⇒  arctan(e^(−αx) ) =Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) e^(−(2n+1)αx)   and  f(α)= ∫_0 ^1  arctan(e^(−αx) )dx  =Σ_(n=0) ^∞   (((−1)^n )/(2n+1))  ∫_0 ^1    e^(−(2n+1)αx) dx  =Σ_(n=0) ^∞     (((−1)^(n+1) )/((2n+1)^2 α))[ e^(−(2n+1)αx) ]_0 ^1   =(1/α) Σ_(n=0) ^∞    (((−1)^(n+1) )/((2n+1)^2 )){ e^(−(2n+1)α)  −1}  = (1/α) Σ_(n=0) ^∞    (((−1)^(n+1) )/((2n+1)^2 )) e^(−(2n+1)α)    +(1/α) Σ_(n=0) ^∞   (((−1)^n )/((2n+1)^2 ))  ...be continued...
wehaveartan(u)=11+u2=n=0(1)nu2narctan(u)=n=0(1)n2n+1u2n+1+c(c=0)arctan(eαx)=n=0(1)n2n+1e(2n+1)αxandf(α)=01arctan(eαx)dx=n=0(1)n2n+101e(2n+1)αxdx=n=0(1)n+1(2n+1)2α[e(2n+1)αx]01=1αn=0(1)n+1(2n+1)2{e(2n+1)α1}=1αn=0(1)n+1(2n+1)2e(2n+1)α+1αn=0(1)n(2n+1)2becontinued
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jun/18
  let t=e^(−αx   ) dt=e^(−αx) ×−α dx  dx=(dt/(−αt))  ∫_1 ^e^(−α)   tan^− (t)×(dt/(−αt))  =(1/(−α))∫_1 ^e^(−α)  (1/t)(t−(t^3 /3)+(t^5 /5)...)dt  ((−1)/α)∫_1 ^e^(−α)  (1−(t^2 /3)+(t^4 /5)..)dt  =((−1)/α)×∣t−(t^3 /9)+(t^5 /(25))...)∣_1 ^e^(−α)
lett=eαxdt=eαx×αdxdx=dtαt1eαtan(t)×dtαt=1α1eα1t(tt33+t55)dt1α1eα(1t23+t45..)dt=1α×tt39+t525)1eα

Leave a Reply

Your email address will not be published. Required fields are marked *