Question Number 51825 by Abdo msup. last updated on 30/Dec/18

Commented by maxmathsup by imad last updated on 31/Dec/18
![let put e^(−α) =λ ⇒f(α)=∫_0 ^1 ln(1+λx)dx and by parts u^′ =1 ,v=ln(1+λx) we get f(α) =[xln(1+λx)]_0 ^1 −∫_0 ^1 x (λ/(1+λx))dx =ln(1+λ)−∫_0 ^1 ((λx+1−1)/(1+λx))dx =ln(1+λ)−1 +∫_0 ^1 (dx/(1+λx)) =ln(1+λ)−1 +(1/λ)ln∣1+λx∣ +c ⇒ f(α)=ln(1+e^(−α) )−1 +e^(−α) ln∣1+e^(−α) x∣ +c .](https://www.tinkutara.com/question/Q51891.png)
Commented by maxmathsup by imad last updated on 31/Dec/18

Commented by Abdo msup. last updated on 31/Dec/18
![f(α)=ln(1+λ)−1+[(1/λ)ln∣1+λx∣]_0 ^1 +c =ln(1+λ)−1 +(1/λ)ln(1+λ)+c ⇒f(α)=ln(1+e^(−α) )−1+e^α ln(1+e^(−α) )+c =(1+e^α )ln(1+e^(−α) )−1+c .](https://www.tinkutara.com/question/Q51900.png)
Answered by Smail last updated on 30/Dec/18
![let t=1+e^(−α) x⇒dx=e^α dt f(α)=e^α ∫_1 ^(1+e^(−α) ) ln(t)dt by parts u=ln(t)⇒u′=(1/t) v′=1⇒v=t f(α)=e^α [tlnt]_1 ^(1+e^(−α) ) −e^α ∫_1 ^(1+e^(−α) ) dt =e^α ((1+e^(−α) )ln(1+e^(−α) )−e^(−α) ) f(α)=(e^α +1)(ln(e^α +1)−α)−1](https://www.tinkutara.com/question/Q51833.png)