Menu Close

find-f-0-1-ln-1-e-x-dx-with-0-




Question Number 51825 by Abdo msup. last updated on 30/Dec/18
find f(α)=∫_0 ^1 ln(1+e^(−α) x)dx  with α≥0
findf(α)=01ln(1+eαx)dxwithα0
Commented by maxmathsup by imad last updated on 31/Dec/18
let put e^(−α)  =λ ⇒f(α)=∫_0 ^1 ln(1+λx)dx and by parts u^′ =1 ,v=ln(1+λx)  we get f(α) =[xln(1+λx)]_0 ^1  −∫_0 ^1  x (λ/(1+λx))dx  =ln(1+λ)−∫_0 ^1  ((λx+1−1)/(1+λx))dx =ln(1+λ)−1 +∫_0 ^1   (dx/(1+λx))  =ln(1+λ)−1 +(1/λ)ln∣1+λx∣ +c ⇒  f(α)=ln(1+e^(−α) )−1 +e^(−α) ln∣1+e^(−α) x∣ +c .
letputeα=λf(α)=01ln(1+λx)dxandbypartsu=1,v=ln(1+λx)wegetf(α)=[xln(1+λx)]0101xλ1+λxdx=ln(1+λ)01λx+111+λxdx=ln(1+λ)1+01dx1+λx=ln(1+λ)1+1λln1+λx+cf(α)=ln(1+eα)1+eαln1+eαx+c.
Commented by maxmathsup by imad last updated on 31/Dec/18
f(α)=ln(1+e^(−α) )−1 +e^α ln∣1+e^(−α) x∣ +c .
f(α)=ln(1+eα)1+eαln1+eαx+c.
Commented by Abdo msup. last updated on 31/Dec/18
f(α)=ln(1+λ)−1+[(1/λ)ln∣1+λx∣]_0 ^1  +c  =ln(1+λ)−1 +(1/λ)ln(1+λ)+c  ⇒f(α)=ln(1+e^(−α) )−1+e^α ln(1+e^(−α) )+c  =(1+e^α )ln(1+e^(−α) )−1+c  .
f(α)=ln(1+λ)1+[1λln1+λx]01+c=ln(1+λ)1+1λln(1+λ)+cf(α)=ln(1+eα)1+eαln(1+eα)+c=(1+eα)ln(1+eα)1+c.
Answered by Smail last updated on 30/Dec/18
let  t=1+e^(−α) x⇒dx=e^α dt  f(α)=e^α ∫_1 ^(1+e^(−α) ) ln(t)dt  by parts  u=ln(t)⇒u′=(1/t)  v′=1⇒v=t  f(α)=e^α [tlnt]_1 ^(1+e^(−α) ) −e^α ∫_1 ^(1+e^(−α) ) dt  =e^α ((1+e^(−α) )ln(1+e^(−α) )−e^(−α) )  f(α)=(e^α +1)(ln(e^α +1)−α)−1
lett=1+eαxdx=eαdtf(α)=eα11+eαln(t)dtbypartsu=ln(t)u=1tv=1v=tf(α)=eα[tlnt]11+eαeα11+eαdt=eα((1+eα)ln(1+eα)eα)f(α)=(eα+1)(ln(eα+1)α)1

Leave a Reply

Your email address will not be published. Required fields are marked *