Menu Close

find-f-0-arctan-x-1-x-2-dx-with-gt-0-




Question Number 50683 by maxmathsup by imad last updated on 18/Dec/18
find f(λ) =∫_0 ^∞    ((arctan(λx))/(1+λx^2 ))dx  with λ>0
findf(λ)=0arctan(λx)1+λx2dxwithλ>0
Commented by Abdo msup. last updated on 21/Dec/18
changement (√λ)x=t give  f(λ)=(1/( (√λ)))∫_0 ^∞   ((arctan(λ(t/( (√λ)))))/(1+t^2 ))dt=(1/( (√λ)))∫_0 ^∞   ((arctan((√λ)t))/(1+t^2 ))dt  and ∫_0 ^∞    ((arctan((√λ)t))/(1+t^2 ))dt =W((√λ)) with  W(x)=∫_0 ^∞   ((arctan(xt))/(1+t^2 ))dt  (x>0) let determine W(x)  W^′ (x)=∫_0 ^∞    (t/((1+x^2 t^2 )(1+t^2 )))dt  =_(xt =u)     ∫_0 ^∞     (u/(x(1+u^2 )(1+(u^2 /x^2 )))) (du/x)  =∫_0 ^∞     ((udu)/((u^2  +x^2 )(u^2  +1))) let devompose  F(u)=(u/((u^2  +x^2 )(u^2  +1)))  F(u)=((au+b)/(u^2  +x^2 )) +((cu +d)/(u^2  +1))  F(−u)=−F(u) ⇒((−au+b)/(u^2  +x^2 )) +((−cu +d)/(u^2  +1))  =((−au−b)/(u^2  +x^2 )) +((−cu−d)/(u^(2 ) +1)) ⇒b=d=0 ⇒  F(u)=((au)/(u^2  +x^2 )) +((cu)/(u^2  +1))  lim_(u→+∞) uF(u)=0=a+c ⇒c=−a ⇒  F(u)=((au)/(u^2  +x^2 )) −((au)/(u^2  +1))  F(1)=(1/(2(x^2  +1))) =(a/(x^2  +1)) −(a/2) ⇒  (1/2) =a−((a(x^2  +1))/2) ⇒1=2a −(x^2  +1)a =(1−x^2 )a ⇒  a=(1/(1−x^2 ))   (we suppose x^2 ≠1) ⇒  F(u) =(1/(1−x^2 )){ (u/(u^2  +x^2 )) −(u/(u^2  +1))} ⇒  ∫_0 ^∞  F(u)du =(1/(1−x^2 ))( ∫_0 ^∞   ((udu)/(u^2  +x^2 ))−∫_0 ^∞   (u/(1+u^2 ))du) but  ∫_0 ^∞    ((udu)/(1+u^2 ))du = (1/2)ln(1+u^2 ) also  ∫_0 ^∞    ((udu)/(u^2  +x^2 )) du =_(u=xα)   ∫_0 ^∞   ((xα )/(x^2 α^2  +x^2 )) xdα  =∫_0 ^∞     ((αdα)/(α^2  +1)) ⇒∫_0 ^∞  F(u)du =0 ⇒W^′ (x)=0 ⇒  W(x)=c =W(1) = ∫_0 ^∞  ((arctant)/(1+t^2 )) dt changement  t=(1/u)  give  W(1)=−∫_0 ^∞    (((π/2)−arctanu)/(1+(1/u^2 ))) ((−du)/u^2 )  =∫_0 ^∞     (((π/2)−arctanu)/(u^2  +1)) du  =(π/2)∫_0 ^∞  (du/(1+u^2 )) −∫_0 ^∞    ((arctanu)/(1+u^2 )) du =(π^2 /4) −W(1) ⇒  2W(1)=(π^2 /4) ⇒W(1)=(π^2 /8) ⇒f(λ)=(π^2 /(8(√λ))) .
changementλx=tgivef(λ)=1λ0arctan(λtλ)1+t2dt=1λ0arctan(λt)1+t2dtand0arctan(λt)1+t2dt=W(λ)withW(x)=0arctan(xt)1+t2dt(x>0)letdetermineW(x)W(x)=0t(1+x2t2)(1+t2)dt=xt=u0ux(1+u2)(1+u2x2)dux=0udu(u2+x2)(u2+1)letdevomposeF(u)=u(u2+x2)(u2+1)F(u)=au+bu2+x2+cu+du2+1F(u)=F(u)au+bu2+x2+cu+du2+1=aubu2+x2+cudu2+1b=d=0F(u)=auu2+x2+cuu2+1limu+uF(u)=0=a+cc=aF(u)=auu2+x2auu2+1F(1)=12(x2+1)=ax2+1a212=aa(x2+1)21=2a(x2+1)a=(1x2)aa=11x2(wesupposex21)F(u)=11x2{uu2+x2uu2+1}0F(u)du=11x2(0uduu2+x20u1+u2du)but0udu1+u2du=12ln(1+u2)also0uduu2+x2du=u=xα0xαx2α2+x2xdα=0αdαα2+10F(u)du=0W(x)=0W(x)=c=W(1)=0arctant1+t2dtchangementt=1ugiveW(1)=0π2arctanu1+1u2duu2=0π2arctanuu2+1du=π20du1+u20arctanu1+u2du=π24W(1)2W(1)=π24W(1)=π28f(λ)=π28λ.

Leave a Reply

Your email address will not be published. Required fields are marked *