find-f-0-arctan-x-1-x-2-dx-with-gt-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 50683 by maxmathsup by imad last updated on 18/Dec/18 findf(λ)=∫0∞arctan(λx)1+λx2dxwithλ>0 Commented by Abdo msup. last updated on 21/Dec/18 changementλx=tgivef(λ)=1λ∫0∞arctan(λtλ)1+t2dt=1λ∫0∞arctan(λt)1+t2dtand∫0∞arctan(λt)1+t2dt=W(λ)withW(x)=∫0∞arctan(xt)1+t2dt(x>0)letdetermineW(x)W′(x)=∫0∞t(1+x2t2)(1+t2)dt=xt=u∫0∞ux(1+u2)(1+u2x2)dux=∫0∞udu(u2+x2)(u2+1)letdevomposeF(u)=u(u2+x2)(u2+1)F(u)=au+bu2+x2+cu+du2+1F(−u)=−F(u)⇒−au+bu2+x2+−cu+du2+1=−au−bu2+x2+−cu−du2+1⇒b=d=0⇒F(u)=auu2+x2+cuu2+1limu→+∞uF(u)=0=a+c⇒c=−a⇒F(u)=auu2+x2−auu2+1F(1)=12(x2+1)=ax2+1−a2⇒12=a−a(x2+1)2⇒1=2a−(x2+1)a=(1−x2)a⇒a=11−x2(wesupposex2≠1)⇒F(u)=11−x2{uu2+x2−uu2+1}⇒∫0∞F(u)du=11−x2(∫0∞uduu2+x2−∫0∞u1+u2du)but∫0∞udu1+u2du=12ln(1+u2)also∫0∞uduu2+x2du=u=xα∫0∞xαx2α2+x2xdα=∫0∞αdαα2+1⇒∫0∞F(u)du=0⇒W′(x)=0⇒W(x)=c=W(1)=∫0∞arctant1+t2dtchangementt=1ugiveW(1)=−∫0∞π2−arctanu1+1u2−duu2=∫0∞π2−arctanuu2+1du=π2∫0∞du1+u2−∫0∞arctanu1+u2du=π24−W(1)⇒2W(1)=π24⇒W(1)=π28⇒f(λ)=π28λ. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-point-of-intersection-x-y-of-f-x-2x-3-and-g-x-x-3-Next Next post: Given-and-are-the-roots-of-x-3-px-2-qx-pq-0-Find-the-value-of- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.