Menu Close

find-f-0-dt-1-t-i-2-and-calculate-f-




Question Number 43939 by abdo.msup.com last updated on 18/Sep/18
find f(ξ) =∫_0 ^∞    (dt/(1+(t−iξ)^2 ))  and calculate f^′ (ξ)
findf(ξ)=0dt1+(tiξ)2andcalculatef(ξ)
Commented by maxmathsup by imad last updated on 22/Sep/18
f(ξ) =∫_0 ^∞     (dt/((t−ξ)^2 −i^2 )) =∫_0 ^∞    (dt/(((t−ξ)−i)(t−ξ +i)))  =(1/(2i))∫_0 ^∞   { (1/(t−ξ−i)) −(1/(t−ξ +i))}dt ⇒2i f(ξ) =∫_0 ^∞   (dt/(t−ξ−i)) −∫_0 ^∞   (dt/(t−ξ +i))              but ∫  (dt/(t−ξ−i)) =∫ ((t−ξ +i)/((t−ξ)^2  +1)) dt =∫ ((t−ξ)/((t−ξ)^2  +1))dt +i ∫  (dt/((t−ξ)^2  +1))  ∫   ((t−ξ)/((t−ξ)^2  +1))dt =(1/2)ln{ (t−ξ)^2  +1} +c_1   ∫    (dt/((t−ξ)^2  +1)) =_(t−ξ =u)   ∫   (du/(1+u^2 )) =arctan(t−ξ) +c_2   ⇒  ∫    (dt/(t−ξ−i)) =(1/2)ln{(t−ξ)^2 +1} +i arctan(t−ξ) +c also  ∫   (dt/(t−ξ +i)) = (1/2)ln{(t−ξ)^2  +1}−i arctan(t−ξ) ⇒  2if(ξ)= 2i [arctan(t−ξ)]_0 ^(+∞)  = 2i{ (π/2) +arctan(ξ)} ⇒  f(ξ) =(π/2) +arctan(ξ)     and we have   f^′ (ξ) = (1/(1+ξ^2 )) .
f(ξ)=0dt(tξ)2i2=0dt((tξ)i)(tξ+i)=12i0{1tξi1tξ+i}dt2if(ξ)=0dttξi0dttξ+ibutdttξi=tξ+i(tξ)2+1dt=tξ(tξ)2+1dt+idt(tξ)2+1tξ(tξ)2+1dt=12ln{(tξ)2+1}+c1dt(tξ)2+1=tξ=udu1+u2=arctan(tξ)+c2dttξi=12ln{(tξ)2+1}+iarctan(tξ)+calsodttξ+i=12ln{(tξ)2+1}iarctan(tξ)2if(ξ)=2i[arctan(tξ)]0+=2i{π2+arctan(ξ)}f(ξ)=π2+arctan(ξ)andwehavef(ξ)=11+ξ2.

Leave a Reply

Your email address will not be published. Required fields are marked *