Menu Close

find-f-0-pi-4-1-tant-dt-with-gt-0-also-calculate-0-pi-4-tant-1-tant-dt-




Question Number 51551 by maxmathsup by imad last updated on 28/Dec/18
find f(λ) = ∫_0 ^(π/4) (√(1+λtant))dt   with λ>0  also calculate  ∫_0 ^(π/4)   ((tant)/( (√(1+λtant))))dt.
findf(λ)=0π41+λtantdtwithλ>0alsocalculate0π4tant1+λtantdt.
Commented by Abdo msup. last updated on 29/Dec/18
changement tant =x give  f(λ) = ∫_0 ^1  (√(1+λx))(dx/(1+x^2 )) =∫_0 ^1    ((√(1+λx))/(1+x^2 ))dx  =_(λx=sh^2 u)     ∫_0 ^(argsh((√λ)))   ((chu)/(1+(1/λ^2 )sh^4 u)) (1/λ) 2shuchu du  =(2/λ) ∫_0 ^(ln((√λ)+(√(1+λ))))   ((sh(u)ch^2 (u))/(λ^2  +sh^4 u))λ^2 du  =2λ ∫_0 ^(ln((√λ)+(√(1+λ))))   ((sh(u)((1+ch(2u))/2))/(λ^2  +(((ch(2u)−1)/2))^2 ))du  =4λ ∫_0 ^(ln((√λ)+(√(1+λ))))   (((1+ch(2u))sh(u))/(4λ^2  +(ch(2u)−1)^2 ))du  =4λ ∫_0 ^(ln((√λ)+(√(1+λ))))    (((1+((e^(2u)  +e^(−2u) )/2))(((e^u −e^(−u) )/2)))/(4λ^2  +(((e^(2u)  +e^(−2u) )/2)−1)^2 ))du  =4λ ∫_0 ^(ln((√λ)+(√(1+λ))))      (((2+e^(2u)  +e^(−2u) )(e^u  −e^(−u) ))/(16λ^2  +(e^(2u)  +e^(−2u) −2)^2 )) du  =_(e^u =t)     4λ ∫_1 ^((√λ) +(√(1+λ)))    (((2+t^2  +t^(−2) )(t−t^(−1) ))/(16λ^2  +(t^2  +t^(−2) −2)^2 )) (dt/t)  =4λ ∫_1 ^((√λ)+(√(1+λ)))    (((t^4  +2t^2  +1)(t^2 −1))/(t^4 (16λ^2  +(t^2  +t^(−2) −2)^2 )))dt  ...be continued...
changementtant=xgivef(λ)=011+λxdx1+x2=011+λx1+x2dx=λx=sh2u0argsh(λ)chu1+1λ2sh4u1λ2shuchudu=2λ0ln(λ+1+λ)sh(u)ch2(u)λ2+sh4uλ2du=2λ0ln(λ+1+λ)sh(u)1+ch(2u)2λ2+(ch(2u)12)2du=4λ0ln(λ+1+λ)(1+ch(2u))sh(u)4λ2+(ch(2u)1)2du=4λ0ln(λ+1+λ)(1+e2u+e2u2)(eueu2)4λ2+(e2u+e2u21)2du=4λ0ln(λ+1+λ)(2+e2u+e2u)(eueu)16λ2+(e2u+e2u2)2du=eu=t4λ1λ+1+λ(2+t2+t2)(tt1)16λ2+(t2+t22)2dtt=4λ1λ+1+λ(t4+2t2+1)(t21)t4(16λ2+(t2+t22)2)dtbecontinued
Commented by Abdo msup. last updated on 29/Dec/18
let use the changement (√(1+λtant))=u ⇒  1+λtant =u^2  ⇒λtant =u^2  −1 ⇒tant =((u^2 −1)/λ) ⇒  t=arctan((1/λ)u^2 −(1/λ)) ⇒  f(λ) = ∫_1 ^(√(1+λ))  u .(2/λ)  (u/(1+((1/λ)u^2 −(1/λ))^2 ))du  =(2/λ) ∫_1 ^(√(1+λ))    (u^2 /(λ^2  +(u^2 −1)^2 ))du  =_(u =ch(t))     (2/λ) ∫_(argch(1)) ^(argch((√(1+λ))))   ((ch^2 t)/(λ^2   +sh^4 t)) sh(t)dt  ...be continued...
letusethechangement1+λtant=u1+λtant=u2λtant=u21tant=u21λt=arctan(1λu21λ)f(λ)=11+λu.2λu1+(1λu21λ)2du=2λ11+λu2λ2+(u21)2du=u=ch(t)2λargch(1)argch(1+λ)ch2tλ2+sh4tsh(t)dtbecontinued
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
g(t)=(√(1+λtant))   g(0)=1  g((π/4))=(√(1+λ))   ∫_0 ^(π/4) (√(1+λtant)) dt≈(1/2)(1+(√(1+λ)) )×(π/4)  ∫_0 ^(π/4) (√(1+λtant)) dt≈(π/8)(1+(√(1+λ)) )[approxmitation]
g(t)=1+λtantg(0)=1g(π4)=1+λ0π41+λtantdt12(1+1+λ)×π40π41+λtantdtπ8(1+1+λ)[approxmitation]
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
g(t)=(√(1+λtant))   g(0)=1  g((π/4))=(√(1+λ))   ∫_0 ^(π/4) (√(1+λtant)) dt≈(1/2)(1+(√(1+λ)) )×(π/4)  ∫_0 ^(π/4) (√(1+λtant)) dt≈(π/8)(1+(√(1+λ)) )[approxmitation]
g(t)=1+λtantg(0)=1g(π4)=1+λ0π41+λtantdt12(1+1+λ)×π40π41+λtantdtπ8(1+1+λ)[approxmitation]

Leave a Reply

Your email address will not be published. Required fields are marked *