Question Number 51551 by maxmathsup by imad last updated on 28/Dec/18
$${find}\:{f}\left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\mathrm{1}+\lambda{tant}}{dt}\:\:\:{with}\:\lambda>\mathrm{0} \\ $$$${also}\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tant}}{\:\sqrt{\mathrm{1}+\lambda{tant}}}{dt}. \\ $$
Commented by Abdo msup. last updated on 29/Dec/18
$${changement}\:{tant}\:={x}\:{give} \\ $$$${f}\left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}+\lambda{x}}\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\sqrt{\mathrm{1}+\lambda{x}}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=_{\lambda{x}={sh}^{\mathrm{2}} {u}} \:\:\:\:\int_{\mathrm{0}} ^{{argsh}\left(\sqrt{\lambda}\right)} \:\:\frac{{chu}}{\mathrm{1}+\frac{\mathrm{1}}{\lambda^{\mathrm{2}} }{sh}^{\mathrm{4}} {u}}\:\frac{\mathrm{1}}{\lambda}\:\mathrm{2}{shuchu}\:{du} \\ $$$$=\frac{\mathrm{2}}{\lambda}\:\int_{\mathrm{0}} ^{{ln}\left(\sqrt{\lambda}+\sqrt{\mathrm{1}+\lambda}\right)} \:\:\frac{{sh}\left({u}\right){ch}^{\mathrm{2}} \left({u}\right)}{\lambda^{\mathrm{2}} \:+{sh}^{\mathrm{4}} {u}}\lambda^{\mathrm{2}} {du} \\ $$$$=\mathrm{2}\lambda\:\int_{\mathrm{0}} ^{{ln}\left(\sqrt{\lambda}+\sqrt{\mathrm{1}+\lambda}\right)} \:\:\frac{{sh}\left({u}\right)\frac{\mathrm{1}+{ch}\left(\mathrm{2}{u}\right)}{\mathrm{2}}}{\lambda^{\mathrm{2}} \:+\left(\frac{{ch}\left(\mathrm{2}{u}\right)−\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{du} \\ $$$$=\mathrm{4}\lambda\:\int_{\mathrm{0}} ^{{ln}\left(\sqrt{\lambda}+\sqrt{\mathrm{1}+\lambda}\right)} \:\:\frac{\left(\mathrm{1}+{ch}\left(\mathrm{2}{u}\right)\right){sh}\left({u}\right)}{\mathrm{4}\lambda^{\mathrm{2}} \:+\left({ch}\left(\mathrm{2}{u}\right)−\mathrm{1}\right)^{\mathrm{2}} }{du} \\ $$$$=\mathrm{4}\lambda\:\int_{\mathrm{0}} ^{{ln}\left(\sqrt{\lambda}+\sqrt{\mathrm{1}+\lambda}\right)} \:\:\:\frac{\left(\mathrm{1}+\frac{{e}^{\mathrm{2}{u}} \:+{e}^{−\mathrm{2}{u}} }{\mathrm{2}}\right)\left(\frac{{e}^{{u}} −{e}^{−{u}} }{\mathrm{2}}\right)}{\mathrm{4}\lambda^{\mathrm{2}} \:+\left(\frac{{e}^{\mathrm{2}{u}} \:+{e}^{−\mathrm{2}{u}} }{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} }{du} \\ $$$$=\mathrm{4}\lambda\:\int_{\mathrm{0}} ^{{ln}\left(\sqrt{\lambda}+\sqrt{\mathrm{1}+\lambda}\right)} \:\:\:\:\:\frac{\left(\mathrm{2}+{e}^{\mathrm{2}{u}} \:+{e}^{−\mathrm{2}{u}} \right)\left({e}^{{u}} \:−{e}^{−{u}} \right)}{\mathrm{16}\lambda^{\mathrm{2}} \:+\left({e}^{\mathrm{2}{u}} \:+{e}^{−\mathrm{2}{u}} −\mathrm{2}\right)^{\mathrm{2}} }\:{du} \\ $$$$=_{{e}^{{u}} ={t}} \:\:\:\:\mathrm{4}\lambda\:\int_{\mathrm{1}} ^{\sqrt{\lambda}\:+\sqrt{\mathrm{1}+\lambda}} \:\:\:\frac{\left(\mathrm{2}+{t}^{\mathrm{2}} \:+{t}^{−\mathrm{2}} \right)\left({t}−{t}^{−\mathrm{1}} \right)}{\mathrm{16}\lambda^{\mathrm{2}} \:+\left({t}^{\mathrm{2}} \:+{t}^{−\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} }\:\frac{{dt}}{{t}} \\ $$$$=\mathrm{4}\lambda\:\int_{\mathrm{1}} ^{\sqrt{\lambda}+\sqrt{\mathrm{1}+\lambda}} \:\:\:\frac{\left({t}^{\mathrm{4}} \:+\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}\right)\left({t}^{\mathrm{2}} −\mathrm{1}\right)}{{t}^{\mathrm{4}} \left(\mathrm{16}\lambda^{\mathrm{2}} \:+\left({t}^{\mathrm{2}} \:+{t}^{−\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} \right)}{dt} \\ $$$$…{be}\:{continued}… \\ $$
Commented by Abdo msup. last updated on 29/Dec/18
$${let}\:{use}\:{the}\:{changement}\:\sqrt{\mathrm{1}+\lambda{tant}}={u}\:\Rightarrow \\ $$$$\mathrm{1}+\lambda{tant}\:={u}^{\mathrm{2}} \:\Rightarrow\lambda{tant}\:={u}^{\mathrm{2}} \:−\mathrm{1}\:\Rightarrow{tant}\:=\frac{{u}^{\mathrm{2}} −\mathrm{1}}{\lambda}\:\Rightarrow \\ $$$${t}={arctan}\left(\frac{\mathrm{1}}{\lambda}{u}^{\mathrm{2}} −\frac{\mathrm{1}}{\lambda}\right)\:\Rightarrow \\ $$$${f}\left(\lambda\right)\:=\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{1}+\lambda}} \:{u}\:.\frac{\mathrm{2}}{\lambda}\:\:\frac{{u}}{\mathrm{1}+\left(\frac{\mathrm{1}}{\lambda}{u}^{\mathrm{2}} −\frac{\mathrm{1}}{\lambda}\right)^{\mathrm{2}} }{du} \\ $$$$=\frac{\mathrm{2}}{\lambda}\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{1}+\lambda}} \:\:\:\frac{{u}^{\mathrm{2}} }{\lambda^{\mathrm{2}} \:+\left({u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{du} \\ $$$$=_{{u}\:={ch}\left({t}\right)} \:\:\:\:\frac{\mathrm{2}}{\lambda}\:\int_{{argch}\left(\mathrm{1}\right)} ^{{argch}\left(\sqrt{\mathrm{1}+\lambda}\right)} \:\:\frac{{ch}^{\mathrm{2}} {t}}{\lambda^{\mathrm{2}} \:\:+{sh}^{\mathrm{4}} {t}}\:{sh}\left({t}\right){dt} \\ $$$$…{be}\:{continued}… \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
$${g}\left({t}\right)=\sqrt{\mathrm{1}+\lambda{tant}}\: \\ $$$${g}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${g}\left(\frac{\pi}{\mathrm{4}}\right)=\sqrt{\mathrm{1}+\lambda}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\mathrm{1}+\lambda{tant}}\:{dt}\approx\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\lambda}\:\right)×\frac{\pi}{\mathrm{4}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\mathrm{1}+\lambda{tant}}\:{dt}\approx\frac{\pi}{\mathrm{8}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\lambda}\:\right)\left[{approxmitation}\right] \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
$${g}\left({t}\right)=\sqrt{\mathrm{1}+\lambda{tant}}\: \\ $$$${g}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${g}\left(\frac{\pi}{\mathrm{4}}\right)=\sqrt{\mathrm{1}+\lambda}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\mathrm{1}+\lambda{tant}}\:{dt}\approx\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\lambda}\:\right)×\frac{\pi}{\mathrm{4}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\mathrm{1}+\lambda{tant}}\:{dt}\approx\frac{\pi}{\mathrm{8}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\lambda}\:\right)\left[{approxmitation}\right] \\ $$$$ \\ $$