Menu Close

find-f-a-0-1-cos-2-ax-x-2-dx-2-calculate-f-a-




Question Number 43935 by abdo.msup.com last updated on 18/Sep/18
find f(a) =∫_0 ^∞  ((1−cos^2 (ax))/x^2 )dx  2)calculate f^′ (a).
findf(a)=01cos2(ax)x2dx2)calculatef(a).
Commented by maxmathsup by imad last updated on 19/Sep/18
we have f(a) = ∫_0 ^∞    ((sin^2 (ax))/x^2 )dx =_(ax=t)   ∫_0 ^∞    ((sin^2 t)/(((t/a))^2 )) (dt/a)  = a ∫_0 ^∞   ((sin^2 t)/t^2 )dt   by parts  u^′ =(1/t^2 ) and v=sin^2 t ⇒  f(a) =a { [−(1/t) sin^2 t]_0 ^∞  −∫_0 ^∞    −(1/t) (2sint cost)dt}  =a{  2 ∫_0 ^∞   ((sint cost)/t)dt} =a ∫_0 ^∞    ((sin(2t))/t)dt  =_(2t =u)    a ∫_0 ^∞    ((sin(u))/(u/2)) (du/2)  = a ∫_0 ^∞    ((sin(u))/u) du =a (π/2)  ⇒f(a) =((πa)/2) .  2) we have f(a) =((πa)/2) ⇒f^′ (a) =0 .
wehavef(a)=0sin2(ax)x2dx=ax=t0sin2t(ta)2dta=a0sin2tt2dtbypartsu=1t2andv=sin2tf(a)=a{[1tsin2t]001t(2sintcost)dt}=a{20sintcosttdt}=a0sin(2t)tdt=2t=ua0sin(u)u2du2=a0sin(u)udu=aπ2f(a)=πa2.2)wehavef(a)=πa2f(a)=0.

Leave a Reply

Your email address will not be published. Required fields are marked *