Menu Close

find-f-a-0-1-dt-a-2-t-2-3-with-a-gt-0-




Question Number 42793 by maxmathsup by imad last updated on 02/Sep/18
find f(a)= ∫_0 ^1    (dt/((a^2  +t^2 )^3 ))   with a>0
findf(a)=01dt(a2+t2)3witha>0
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18
t=atanα  dt=asec^2 αdα  ∫_0 ^(tan^(−1) ((1/a))) ((asec^2 αdα)/({a^2 (1+tan^2 α)}^3 ))  ∫_(0 ) ^(tan^(−1) ((1/a))) ((asec^2 αdα)/(a^6 sec^6 α))  (1/a^5 )∫_0 ^(tan^(−1) ((1/a))) (((1+cos2α)/2))^2 dα  (1/(4a^5 ))∫_0 ^(tan^(−1) ((1/a))) 1+2cos2α+((1+cos4α)/2) dα  (1/(8a^5 ))∫_0 ^(tan^(−1) ((1/a)))   3+4cos2α+cos4α dα  (1/(8a^5 ))∣(3α+((4sin2α)/2)+((sin4α)/4))∣_0 ^(tan^(−1) ((1/a)))   now tanα=(1/a)  sin2α=((2tanα)/(1+tan^2 α))=((2/a)/(1+(1/a^2 )))=((2a)/(1+a^2 ))  sin4α=2sin2α.cos2α             =2(((2t)/(1+t^2 ))×((1−t^2 )/(1+t^2 )))    =((4((1/a))(1−(1/a^2 )))/((1+(1/a^2 ))^2 ))=(((4(a^2 −1))/a^3 )/(((a^2 +1)^2 )/a^4 ))=((4a(a^2 −1))/((a^2 +1)^2 ))  now put the value...  contd  so the ans is  =(1/(8a^5 ))∣3tan^(−1) ((1/a))+2.((2a)/(1+a^2 ))+(1/4).((4a(a^2 −1))/((a^2 +1)^2 ))∣  =(1/(8a^5 )){3tan^(−1) ((1/a))+((4a)/(1+a^2 ))+((a^3 −a)/((a^2 +1)^2 ))}
t=atanαdt=asec2αdα0tan1(1a)asec2αdα{a2(1+tan2α)}30tan1(1a)asec2αdαa6sec6α1a50tan1(1a)(1+cos2α2)2dα14a50tan1(1a)1+2cos2α+1+cos4α2dα18a50tan1(1a)3+4cos2α+cos4αdα18a5(3α+4sin2α2+sin4α4)0tan1(1a)nowtanα=1asin2α=2tanα1+tan2α=2a1+1a2=2a1+a2sin4α=2sin2α.cos2α=2(2t1+t2×1t21+t2)=4(1a)(11a2)(1+1a2)2=4(a21)a3(a2+1)2a4=4a(a21)(a2+1)2nowputthevaluecontdsotheansis=18a53tan1(1a)+2.2a1+a2+14.4a(a21)(a2+1)2=18a5{3tan1(1a)+4a1+a2+a3a(a2+1)2}

Leave a Reply

Your email address will not be published. Required fields are marked *