Question Number 44202 by abdo.msup.com last updated on 23/Sep/18
$${find}\:\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} }\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){find}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{8}{x}^{\mathrm{3}} \:+\mathrm{1}} \\ $$
Commented by maxmathsup by imad last updated on 25/Sep/18
$${we}\:{have}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} }\:\Rightarrow{f}^{'} \left({a}\right)\:=−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{3}{a}^{\mathrm{2}} }{\left({x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} \right)^{\mathrm{2}} }{dx}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} \right)^{\mathrm{2}} }\:=\frac{−\mathrm{1}}{\mathrm{3}{a}^{\mathrm{2}} }\:{f}^{'} \left({a}\right)\:\:{but}\:{f}\left({a}\right)\:=\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:{a}^{−\mathrm{2}} \:\Rightarrow{f}^{'} \left({a}\right)\:=−\frac{\mathrm{4}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:{a}^{−\mathrm{3}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} \right)^{\mathrm{2}} }\:=\:\frac{−\mathrm{1}}{\mathrm{3}{a}^{\mathrm{2}} }\:\left(−\frac{\mathrm{4}\pi}{\mathrm{3}\sqrt{\mathrm{3}}{a}^{\mathrm{3}} }\right)\:=\:\frac{\mathrm{4}\pi}{\mathrm{9}{a}^{\mathrm{5}} \sqrt{\mathrm{3}}}\:. \\ $$
Commented by maxmathsup by imad last updated on 25/Sep/18
$${let}\:{take}\:{a}=\mathrm{1}\:\Rightarrow\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{3}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{4}\pi}{\mathrm{9}\sqrt{\mathrm{3}}}\:. \\ $$
Commented by maxmathsup by imad last updated on 25/Sep/18
$$\left.\mathrm{1}\right)\:{changement}\:{x}\:={at}\:{give}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{adt}}{{a}^{\mathrm{3}} \left(\mathrm{1}+{t}^{\mathrm{3}} \right)}\:=\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{3}} \:+\mathrm{1}} \\ $$$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{{t}^{\mathrm{3}} \:+\mathrm{1}}\:\Rightarrow\:{I}\:=_{{t}=\frac{\mathrm{1}}{{u}}} \:\:\:\:\:−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\frac{\mathrm{1}}{{u}^{\mathrm{3}} }\:+\mathrm{1}}\:\frac{−{du}}{{u}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{du}}{\frac{\mathrm{1}}{{u}}\:+{u}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{u}}{{u}^{\mathrm{3}\:} \:+\mathrm{1}}\:{du}\:\Rightarrow\:\mathrm{2}{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{3}} \:+\mathrm{1}}\:+\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}}{{t}^{\mathrm{3}} \:+\mathrm{1}}{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}+\mathrm{1}}{{t}^{\mathrm{3}} \:+\mathrm{1}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{{t}^{\mathrm{2}} −{t}\:+\mathrm{1}}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dt}}{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}}\:=_{{t}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{u}} \:\:\frac{\mathrm{4}}{\mathrm{3}}\int_{−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{+\infty} \:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{du} \\ $$$$=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:\:\int_{−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{+\infty} \:\:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:\left[{arctan}\left({u}\right)\right]_{−\frac{\mathrm{1}\:}{\:\sqrt{\mathrm{3}}}} ^{+\infty} \:\:\:\:\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\frac{\pi}{\mathrm{2}}\:+\frac{\pi}{\mathrm{6}}\right\}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:.\frac{\mathrm{2}\pi}{\mathrm{3}}\:=\frac{\mathrm{4}\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\:{I}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:\Rightarrow{f}\left({a}\right)\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}{a}^{\mathrm{2}} \sqrt{\mathrm{3}}}\:. \\ $$
Commented by maxmathsup by imad last updated on 25/Sep/18
$${we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} }\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}{a}^{\mathrm{2}} \sqrt{\mathrm{3}}}\:\:{let}\:{take}\:{a}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{3}} \:+\frac{\mathrm{1}}{\mathrm{8}}}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}\:\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\mathrm{3}}}\:=\:\frac{\mathrm{8}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:\Rightarrow\:\mathrm{8}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{8}{x}^{\mathrm{3}} \:+\mathrm{1}}\:=\frac{\mathrm{8}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\mathrm{8}{x}^{\mathrm{3}} \:+\mathrm{1}}\:=\:\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:. \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
$$\left.\mathrm{1}\right)\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{x}^{\mathrm{3}} +{a}^{\mathrm{3}} }\:\:{x}^{\mathrm{3}} ={a}^{\mathrm{3}} {tan}^{\mathrm{2}} \alpha \\ $$$$\mathrm{3}{x}^{\mathrm{2}} {dx}={a}^{\mathrm{3}} ×\mathrm{2}{tan}\alpha{sec}^{\mathrm{2}} \alpha{d}\alpha \\ $$$${dx}=\frac{\mathrm{2}{a}^{\mathrm{3}} }{\mathrm{3}}×\frac{{tan}\alpha{sec}^{\mathrm{2}} \alpha}{\left({a}^{\mathrm{3}} {tan}^{\mathrm{2}} \alpha\right)^{\frac{\mathrm{2}}{\mathrm{3}}} }{d}\alpha=\frac{\mathrm{2}{a}}{\mathrm{3}}×\frac{{sec}^{\mathrm{2}} \alpha}{{tan}^{\frac{\mathrm{1}}{\mathrm{3}}} \alpha}{d}\alpha \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}{a}}{\mathrm{3}}×\frac{{sec}^{\mathrm{2}} \alpha}{{tan}^{\frac{\mathrm{1}}{\mathrm{3}}} \alpha}×\frac{\mathrm{1}}{{a}^{\mathrm{3}} \left({tan}^{\mathrm{2}} \alpha+\mathrm{1}\right)}×{d}\alpha \\ $$$$\frac{\mathrm{2}}{\mathrm{3}{a}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{d}\alpha}{{tan}^{\frac{\mathrm{1}}{\mathrm{3}}} \alpha} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}{a}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\frac{−\mathrm{1}}{\mathrm{3}}} \alpha{cos}^{\frac{\mathrm{1}}{\mathrm{3}}} \alpha{d}\alpha \\ $$$${using}\:{gamma}\:{beta}\:{function}… \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} \alpha{cos}^{\mathrm{2}{q}−\mathrm{1}} \alpha{d}\alpha=\frac{\left.\lceil\left({p}\right)\lceil{q}\right)}{\mathrm{2}\left(\lceil{p}+{q}\right)} \\ $$$${here}\:\mathrm{2}{p}−\mathrm{1}=\frac{−\mathrm{1}}{\mathrm{3}}\:\:\mathrm{2}{p}=\frac{\mathrm{2}}{\mathrm{3}}\:\:{p}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{2}{q}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{3}}\:\:\mathrm{2}{q}=\frac{\mathrm{4}}{\mathrm{3}}\:\:{q}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${so}\:{ans}\:{is}\:\frac{\mathrm{2}}{\mathrm{3}{a}^{\mathrm{2}} }×\frac{\lceil\left(\frac{\mathrm{1}}{\mathrm{3}}\right)×\lceil\left(\frac{\mathrm{2}}{\mathrm{3}}\right)}{\mathrm{2}\lceil\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}{a}^{\mathrm{2}} }×\frac{\lceil\left(\frac{\mathrm{1}}{\mathrm{3}}\right)×\lceil\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{3}{a}^{\mathrm{2}} }×\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{3}}\right)}=\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}\:{a}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left({x}^{\mathrm{3}} +{a}^{\mathrm{3}} \right)^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}{a}}{\mathrm{3}}×\frac{{sec}^{\mathrm{2}} \alpha}{{tan}^{\frac{\mathrm{1}}{\mathrm{3}}} \alpha}×\frac{\mathrm{1}}{\left\{{a}^{\mathrm{3}} \left({tan}^{\mathrm{2}} \alpha+\mathrm{1}\right)\right\}^{\mathrm{2}} }{d}\alpha \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}{a}}{\mathrm{3}}×\frac{{sec}^{\mathrm{2}} \alpha}{{tan}^{\frac{\mathrm{1}}{\mathrm{3}}} \alpha}×\frac{\mathrm{1}}{{a}^{\mathrm{6}} ×{sec}^{\mathrm{4}} \alpha}{d}\alpha \\ $$$$\frac{\mathrm{2}}{\mathrm{3}{a}^{\mathrm{5}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cos}^{\frac{\mathrm{1}}{\mathrm{3}}} \alpha}{{sin}^{\frac{\mathrm{1}}{\mathrm{3}}} \alpha}×{cos}^{\mathrm{2}} \alpha{d}\alpha \\ $$$$\frac{\mathrm{2}}{\mathrm{3}{a}^{\mathrm{5}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\frac{−\mathrm{1}}{\mathrm{3}}} \alpha{cos}^{\frac{\mathrm{7}}{\mathrm{3}}} \alpha{d}\alpha \\ $$$$\mathrm{2}{p}−\mathrm{1}=\frac{−\mathrm{1}}{\mathrm{3}}\:\:{p}=\frac{\mathrm{1}}{\mathrm{3}}\:\: \\ $$$$\mathrm{2}{q}−\mathrm{1}=\frac{\mathrm{7}}{\mathrm{3}}\:\:\mathrm{2}{q}=\frac{\mathrm{10}}{\mathrm{3}}\:\:\:{q}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}{a}^{\mathrm{5}} }×\frac{\lceil\left(\frac{\mathrm{1}}{\mathrm{3}}\right)×\lceil\left(\frac{\mathrm{5}}{\mathrm{3}}\right)}{\mathrm{2}\lceil\left(\frac{\mathrm{5}+\mathrm{1}}{\mathrm{3}}\right)}=\frac{\mathrm{1}}{\mathrm{3}{a}^{\mathrm{5}} }×\frac{\lceil\left(\frac{\mathrm{1}}{\mathrm{3}}\right)×\lceil\left(\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{1}\right)}{\mathrm{1}×\lceil\left(\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}{a}^{\mathrm{5}} }×\frac{\lceil\left(\frac{\mathrm{1}}{\mathrm{3}}\right)×\frac{\mathrm{2}}{\mathrm{3}}×\lceil\left(\frac{\mathrm{2}}{\mathrm{3}}\right)}{\mathrm{1}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{9}{a}^{\mathrm{5}} }×\lceil\left(\frac{\mathrm{1}}{\mathrm{3}}\right)×\lceil\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)=\frac{\mathrm{2}}{\mathrm{9}{a}^{\mathrm{5}} }×\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{3}}\right)}=\frac{\mathrm{4}}{\mathrm{9}{a}^{\mathrm{5}} }×\frac{\pi}{\:\sqrt{\mathrm{3}}} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18