Menu Close

find-f-a-0-dx-x-3-a-3-with-a-gt-0-2-find-g-a-0-dx-x-3-a-3-2-3-find-the-value-of-0-dx-1-x-3-2-4-find-the-value-of-0-dx-8x-3-1-




Question Number 44202 by abdo.msup.com last updated on 23/Sep/18
find  f(a) =∫_0 ^∞   (dx/(x^3  +a^3 )) with a>0  2)find g(a)=∫_0 ^∞   (dx/((x^3  +a^3 )^2 ))  3)find the value of ∫_0 ^∞  (dx/((1+x^3 )^2 ))  4)find the value of ∫_0 ^∞   (dx/(8x^3  +1))
findf(a)=0dxx3+a3witha>02)findg(a)=0dx(x3+a3)23)findthevalueof0dx(1+x3)24)findthevalueof0dx8x3+1
Commented by maxmathsup by imad last updated on 25/Sep/18
we have f(a) =∫_0 ^∞      (dx/(x^3  +a^3 )) ⇒f^′ (a) =−∫_0 ^∞    ((3a^2 )/((x^3  +a^3 )^2 ))dx ⇒  ∫_0 ^∞      (dx/((x^3  +a^3 )^2 )) =((−1)/(3a^2 )) f^′ (a)  but f(a) =((2π)/(3(√3))) a^(−2)  ⇒f^′ (a) =−((4π)/(3(√3))) a^(−3)  ⇒  ∫_0 ^∞      (dx/((x^3  +a^3 )^2 )) = ((−1)/(3a^2 )) (−((4π)/(3(√3)a^3 ))) = ((4π)/(9a^5 (√3))) .
wehavef(a)=0dxx3+a3f(a)=03a2(x3+a3)2dx0dx(x3+a3)2=13a2f(a)butf(a)=2π33a2f(a)=4π33a30dx(x3+a3)2=13a2(4π33a3)=4π9a53.
Commented by maxmathsup by imad last updated on 25/Sep/18
let take a=1 ⇒ ∫_0 ^∞   (dx/((x^3  +1)^2 )) = ((4π)/(9(√3))) .
lettakea=10dx(x3+1)2=4π93.
Commented by maxmathsup by imad last updated on 25/Sep/18
1) changement x =at give f(a) = ∫_0 ^∞   ((adt)/(a^3 (1+t^3 ))) =(1/a^2 ) ∫_0 ^∞   (dt/(t^3  +1))  let I =∫_0 ^∞    (dt/(t^3  +1)) ⇒ I =_(t=(1/u))      −∫_0 ^∞    (1/((1/u^3 ) +1)) ((−du)/u^2 ) =∫_0 ^∞    (du/((1/u) +u^2 ))  =∫_0 ^∞   (u/(u^(3 )  +1)) du ⇒ 2I = ∫_0 ^∞     (dt/(t^3  +1)) +∫_0 ^∞    (t/(t^3  +1))dt =∫_0 ^∞   ((t+1)/(t^3  +1))dt  =∫_0 ^∞    (dt/(t^2 −t +1)) = ∫_0 ^∞      (dt/((t−(1/2))^2  +(3/4))) =_(t−(1/2)=((√3)/2)u)   (4/3)∫_(−(1/( (√3)))) ^(+∞)       (1/(1+u^2 )) ((√3)/2)du  = (2/( (√3)))  ∫_(−(1/( (√3)))) ^(+∞)      (du/(1+u^2 )) =(2/( (√3))) [arctan(u)]_(−((1 )/( (√3)))) ^(+∞)      =(2/( (√3))){(π/2) +(π/6)}=(2/( (√3))) .((2π)/3) =((4π)/(3(√3)))  ⇒ I = ((2π)/(3(√3))) ⇒f(a) = ((2π)/(3a^2 (√3))) .
1)changementx=atgivef(a)=0adta3(1+t3)=1a20dtt3+1letI=0dtt3+1I=t=1u011u3+1duu2=0du1u+u2=0uu3+1du2I=0dtt3+1+0tt3+1dt=0t+1t3+1dt=0dtt2t+1=0dt(t12)2+34=t12=32u4313+11+u232du=2313+du1+u2=23[arctan(u)]13+=23{π2+π6}=23.2π3=4π33I=2π33f(a)=2π3a23.
Commented by maxmathsup by imad last updated on 25/Sep/18
we have ∫_0 ^∞    (dx/(x^3  +a^3 )) = ((2π)/(3a^2 (√3)))  let take a=(1/2) ⇒   ∫_0 ^∞      (dx/(x^3  +(1/8))) = ((2π)/(3 (1/4)(√3))) = ((8π)/(3(√3))) ⇒ 8 ∫_0 ^∞    (dx/(8x^3  +1)) =((8π)/(3(√3))) ⇒  ∫_0 ^∞      (dx/(8x^3  +1)) = (π/(3(√3))) .
wehave0dxx3+a3=2π3a23lettakea=120dxx3+18=2π3143=8π3380dx8x3+1=8π330dx8x3+1=π33.
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
1)∫_0 ^∞ (dx/(x^3 +a^3 ))  x^3 =a^3 tan^2 α  3x^2 dx=a^3 ×2tanαsec^2 αdα  dx=((2a^3 )/3)×((tanαsec^2 α)/((a^3 tan^2 α)^(2/3) ))dα=((2a)/3)×((sec^2 α)/(tan^(1/3) α))dα    ∫_0 ^(π/2) ((2a)/3)×((sec^2 α)/(tan^(1/3) α))×(1/(a^3 (tan^2 α+1)))×dα  (2/(3a^2 ))∫_0 ^(π/2) (dα/(tan^(1/3) α))  (2/(3a^2 ))∫_0 ^(π/2) sin^((−1)/3) αcos^(1/3) αdα  using gamma beta function...  ∫_0 ^(π/2) sin^(2p−1) αcos^(2q−1) αdα=((⌈(p)⌈q))/(2(⌈p+q)))  here 2p−1=((−1)/3)  2p=(2/3)  p=(1/3)  2q−1=(1/3)  2q=(4/3)  q=(2/3)  so ans is (2/(3a^2 ))×((⌈((1/3))×⌈((2/3)))/(2⌈((1/3)+(2/3))))  =(1/(3a^2 ))×((⌈((1/3))×⌈(1−(1/3)))/1)=(1/(3a^2 ))×(π/(sin((π/3))))=((2π)/(3(√3) a^2 ))  2)∫_0 ^∞ (dx/((x^3 +a^3 )^2 ))=∫_0 ^(π/2) ((2a)/3)×((sec^2 α)/(tan^(1/3) α))×(1/({a^3 (tan^2 α+1)}^2 ))dα  ∫_0 ^(π/2) ((2a)/3)×((sec^2 α)/(tan^(1/3) α))×(1/(a^6 ×sec^4 α))dα  (2/(3a^5 ))∫_0 ^(π/2) ((cos^(1/3) α)/(sin^(1/3) α))×cos^2 αdα  (2/(3a^5 ))∫_0 ^(π/2) sin^((−1)/3) αcos^(7/3) αdα  2p−1=((−1)/3)  p=(1/3)    2q−1=(7/3)  2q=((10)/3)   q=(5/3)  (2/(3a^5 ))×((⌈((1/3))×⌈((5/3)))/(2⌈(((5+1)/3))))=(1/(3a^5 ))×((⌈((1/3))×⌈((2/3)+1))/(1×⌈(1)))  =(1/(3a^5 ))×((⌈((1/3))×(2/3)×⌈((2/3)))/1)  =(2/(9a^5 ))×⌈((1/3))×⌈(1−(1/3))=(2/(9a^5 ))×(π/(sin((π/3))))=(4/(9a^5 ))×(π/( (√3)))
1)0dxx3+a3x3=a3tan2α3x2dx=a3×2tanαsec2αdαdx=2a33×tanαsec2α(a3tan2α)23dα=2a3×sec2αtan13αdα0π22a3×sec2αtan13α×1a3(tan2α+1)×dα23a20π2dαtan13α23a20π2sin13αcos13αdαusinggammabetafunction0π2sin2p1αcos2q1αdα=(p)q)2(p+q)here2p1=132p=23p=132q1=132q=43q=23soansis23a2×(13)×(23)2(13+23)=13a2×(13)×(113)1=13a2×πsin(π3)=2π33a22)0dx(x3+a3)2=0π22a3×sec2αtan13α×1{a3(tan2α+1)}2dα0π22a3×sec2αtan13α×1a6×sec4αdα23a50π2cos13αsin13α×cos2αdα23a50π2sin13αcos73αdα2p1=13p=132q1=732q=103q=5323a5×(13)×(53)2(5+13)=13a5×(13)×(23+1)1×(1)=13a5×(13)×23×(23)1=29a5×(13)×(113)=29a5×πsin(π3)=49a5×π3
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18

Leave a Reply

Your email address will not be published. Required fields are marked *