find-f-a-0-pi-4-dx-1-acos-2-x-a-from-R- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 44304 by abdo.msup.com last updated on 26/Sep/18 findf(a)=∫0π4dx1+acos2xafromR. Commented by maxmathsup by imad last updated on 27/Sep/18 f(a)=∫0π4dx1+acos2x=∫0π4dx1+a1+cos(2x)2=∫0π42dx2+a+acos(2x)=2x=t∫0π2dt2+a+acostchangementtan(t2)=ugivef(a)=∫0112+a+a1−u21+u22du1+u2=∫012du2+a+(2+a)u2+a−au2=∫012du2u2+2+2a=∫01duu2+1+acase11+a>0⇒f(a)=u=1+aα∫01+a1+adα(1+a)(1+α2)=11+a[arctan(α)]01+a=arctan(1+a)1+acase21+a<0⇒f(a)=∫01duu2−(−1−a)2=12−1−a∫01{1u−−1−a−1u+−1−a}du=12−1−a[ln∣u−−1−au+−1−a∣]01=12−1−aln∣1−−1−a1+−1−a∣. Commented by maxmathsup by imad last updated on 27/Sep/18 ifa=−1f(a)isdivergent. Answered by Smail last updated on 27/Sep/18 f(a)=∫0π/4dx1+acos2xt=tanx⇒dx=dt1+t2f(a)=∫01dt(1+t2)(1+a1+t2)=∫01dt1+t2+a=∫01dt(1+a)(t2a+1+1)=1a+1∫01dt(ta+1)2+1u=ta+1⇒dt=a+1duf(a)=a+1a+1∫01/a+1duu2+1=a+1a+1[tan−1(u)]01/a+1=a+1a+1tan−1(a+1a+1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: please-prove-0-1-1-1-x-log-x-1-x-dx-4log-2-Next Next post: let-f-a-0-ln-1-a-2-x-2-dx-1-find-a-explicit-form-of-f-x-2-find-0-ln-1-1-x-2-dx-3-calculate-0-ln-1-2-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.