Menu Close

find-f-a-0-pi-4-dx-1-acos-2-x-a-from-R-




Question Number 44304 by abdo.msup.com last updated on 26/Sep/18
find f(a)=∫_0 ^(π/4)   (dx/(1+acos^2 x))  a from R.
findf(a)=0π4dx1+acos2xafromR.
Commented by maxmathsup by imad last updated on 27/Sep/18
f(a) = ∫_0 ^(π/4)    (dx/(1+acos^2 x)) = ∫_0 ^(π/4)    (dx/(1+a((1+cos(2x))/2)))  = ∫_0 ^(π/4)     ((2dx)/(2 +a +acos(2x))) =_(2x=t)    ∫_0 ^(π/2)  (dt/(2+a +acost)) changement tan((t/2))=u  give f(a) = ∫_0 ^1      (1/(2+a +a ((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 )) = ∫_0 ^1    ((2du)/(2+a +(2+a)u^2  +a −au^2 ))  = ∫_0 ^1     ((2du)/(2u^2  +2+2a)) = ∫_0 ^1    (du/(u^2  +1+a))  case 1    1+a>0  ⇒f(a) =_(u=(√(1+a))α)   ∫_0 ^(√(1+a))     (((√(1+a))dα)/((1+a)(1+α^2 )))  = (1/( (√(1+a)))) [ arctan(α)]_0 ^(√(1+a)) = ((arctan((√(1+a))))/( (√(1+a))))  case 2  1+a <0 ⇒f(a) = ∫_0 ^1    (du/(u^2 −((√(−1−a)))^2 ))  =(1/(2(√(−1−a)))) ∫_0 ^1 {  (1/(u−(√(−1−a)))) −(1/(u+(√(−1−a))))}du  = (1/(2(√(−1−a)))) [ ln∣((u−(√(−1−a)))/(u+(√(−1−a))))∣]_0 ^1 = (1/(2(√(−1−a))))ln∣((1−(√(−1−a)))/(1+(√(−1−a))))∣ .
f(a)=0π4dx1+acos2x=0π4dx1+a1+cos(2x)2=0π42dx2+a+acos(2x)=2x=t0π2dt2+a+acostchangementtan(t2)=ugivef(a)=0112+a+a1u21+u22du1+u2=012du2+a+(2+a)u2+aau2=012du2u2+2+2a=01duu2+1+acase11+a>0f(a)=u=1+aα01+a1+adα(1+a)(1+α2)=11+a[arctan(α)]01+a=arctan(1+a)1+acase21+a<0f(a)=01duu2(1a)2=121a01{1u1a1u+1a}du=121a[lnu1au+1a]01=121aln11a1+1a.
Commented by maxmathsup by imad last updated on 27/Sep/18
if a=−1  f(a) is divergent .
ifa=1f(a)isdivergent.
Answered by Smail last updated on 27/Sep/18
f(a)=∫_0 ^(π/4) (dx/(1+acos^2 x))  t=tanx⇒dx=(dt/(1+t^2 ))  f(a)=∫_0 ^1 (dt/((1+t^2 )(1+(a/(1+t^2 )))))  =∫_0 ^1 (dt/(1+t^2 +a))=∫_0 ^1 (dt/((1+a)((t^2 /(a+1))+1)))  =(1/(a+1))∫_0 ^1 (dt/(((t/( (√(a+1)))))^2 +1))  u=(t/( (√(a+1))))⇒dt=(√(a+1))du  f(a)=((√(a+1))/(a+1))∫_0 ^(1/(√(a+1))) (du/(u^2 +1))  =((√(a+1))/(a+1))[tan^(−1) (u)]_0 ^(1/(√(a+1)))   =((√(a+1))/(a+1))tan^(−1) (((√(a+1))/(a+1)))
f(a)=0π/4dx1+acos2xt=tanxdx=dt1+t2f(a)=01dt(1+t2)(1+a1+t2)=01dt1+t2+a=01dt(1+a)(t2a+1+1)=1a+101dt(ta+1)2+1u=ta+1dt=a+1duf(a)=a+1a+101/a+1duu2+1=a+1a+1[tan1(u)]01/a+1=a+1a+1tan1(a+1a+1)

Leave a Reply

Your email address will not be published. Required fields are marked *