Menu Close

find-f-a-a-dx-1-x-2-x-2-a-2-with-a-gt-0-




Question Number 50423 by Abdo msup. last updated on 16/Dec/18
find f(a) =∫_a ^(+∞)    (dx/((1+x^2 )(√(x^2 −a^2 ))))  with a>0
findf(a)=a+dx(1+x2)x2a2witha>0
Commented by Abdo msup. last updated on 17/Dec/18
changement x=ach(t) give t=argch((x/a))  f(a) = ∫_0 ^(+∞)   ((ash(t)dt)/((1+a^2 ch^2 (t))ash(t)))  =∫_0 ^∞   (dt/(1+a^2  ((1+ch(2t))/2))) =∫_0 ^∞   ((2dt)/(2 +a^2  +a^2 ((e^(2t)  +e^(−2t) )/2)))  = ∫_0 ^∞    ((4dt)/(4 +2a^2  +a^2  e^(2t)  +a^2 e^(−2t) ))  =_(e^(2t)  =u)    ∫_1 ^∞        (4/(4+2a^2  +a^2 u +a^2 u^(−1) )) (du/(2u))  =2∫_1 ^∞      (du/((4+2a^2 )u +a^2 u^2  +a^2 ))  =∫_1 ^∞      ((2du)/(a^2 u^2  +(4+2a^2 )u +a^2 ))  Δ^′ =(2+a^2 )^2 −a^4 =4+4a^2 >0 ⇒  u_1 =((−2−a^2  +2(√(1+a^2 )))/a^2 )  u_2 =((−2−a^2 −2(√(1+a^2 )))/a^2 )  F(u)=(2/((u−u_1 )(u−u_2 ))) =(2/(u_1 −u_2 ))((1/(u−u_1 )) −(1/(u−u_2 )))  =(a^2 /(2(√(1+a^2 ))))((1/(u−u_1 )) −(1/(u−u_2 ))) ⇒  ∫_1 ^∞   F(u)du =(a^2 /(2(√(1+a^2 ))))[ln∣((u−u_1 )/(u−u_2 ))∣]_1 ^(+∞)   =(a^2 /(2(√(1+a^2 ))))ln∣((1−u_2 )/(1−u_1 ))∣   =(a^2 /(2(√(1+a^2 ))))ln∣((1−((−2−a^2 −2(√(1+a^2 )))/a^2 ))/(1−((−2−a^2  +2(√(1+a^2 )))/a^2 )))∣  =(a^2 /(2(√(1+a^2 ))))ln∣((2a^2  +2+2(√(1+a^2 )))/(2a^2  +2−2(√(1+a^2 ))))∣  =(a^2 /(2(√(1+a^2 ))))ln∣((a^2  +1+(√(1+a^2 )))/(a^2  +1−(√(1+a^2 ))))∣ =f(a)
changementx=ach(t)givet=argch(xa)f(a)=0+ash(t)dt(1+a2ch2(t))ash(t)=0dt1+a21+ch(2t)2=02dt2+a2+a2e2t+e2t2=04dt4+2a2+a2e2t+a2e2t=e2t=u144+2a2+a2u+a2u1du2u=21du(4+2a2)u+a2u2+a2=12dua2u2+(4+2a2)u+a2Δ=(2+a2)2a4=4+4a2>0u1=2a2+21+a2a2u2=2a221+a2a2F(u)=2(uu1)(uu2)=2u1u2(1uu11uu2)=a221+a2(1uu11uu2)1F(u)du=a221+a2[lnuu1uu2]1+=a221+a2ln1u21u1=a221+a2ln12a221+a2a212a2+21+a2a2=a221+a2ln2a2+2+21+a22a2+221+a2=a221+a2lna2+1+1+a2a2+11+a2=f(a)
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18
∫(dx/((1+x^2 )(√(x^2 −a^2 ))))  t=(1/x)  x=(1/t)  dx=((−1)/t^2 )dt  ∫((−dt)/(t^2 (1+(1/t^2 ))(√((1/t^2 )−a^2 )) ))  ∫((−tdt)/((t^2 +1)(√(1−a^2 t^2 ))))  =((−1)/a)∫((tdt)/((t^2 +1)(√((1/a^2 )−t^2 )) ))  k=t^2   dk=2tdt  =((−1)/(2a))∫(dk/((k+1)(√((1/a^2 )−k))))  p^2 =(1/a^2 )−k    2pdp=−dk  =((−1)/(2a))∫((−2pdp)/(((1/a^2 )−p^2 +1)p))  =(1/a)∫(dp/(((1/a^2 )+1)−p^2 )) formula[ ∫(dx/(a^2 −x^2 ))=(1/(2a))ln(((a+x)/(a−x)))]  =(1/a)×(1/(2(√(((1/a^2 )+1))) ))×ln((((√((1/a^2 )+1)) +p)/( (√((1/a^2 )+1)) −p)))  =(1/(2(√(1+a^2 ))))ln((((√((1/a^2 )+1)) +(√((1/a^2 )−k)) )/( (√((1/a^2 )+1)) −(√((1/a^2 )−k)) )))  =(1/(2(√(1+a^2 ))))ln((((√(1+a^2 )) +(√(1−a^2 k)) )/( (√(1+a^2 )) −(√(1−a^2 k)))))  =(1/(2(√(1+a^2 ))))ln((((√(1+a^2 )) +(√(1−a^2 t^2 )))/( (√(1+a^2 )) −(√(1−a^2 t^2 )) )))  =(1/(2(√(1+a^2 ))))∣ln((((√(1+a^2 )) +(√(1−(a^2 /x^2 ))))/( (√(1+a^2 )) −(√(1−(a^2 /x^2 ))))))∣_a ^∞   =(1/(2(√(1+a^2 ))))[{ln((((√(1+a^2 )) +(√(1−0)))/( (√(1+a^2 )) −(√(1−0)))))}−ln((((√(1+a^2 )) +(√0))/( (√(1+a^2 )) −(√0))))}]  =(1/( (√(1+a^2 ))))ln((((√(1+a^2 )) +1)/( (√(1+a^2 )) −1)))
dx(1+x2)x2a2t=1xx=1tdx=1t2dtdtt2(1+1t2)1t2a2tdt(t2+1)1a2t2=1atdt(t2+1)1a2t2k=t2dk=2tdt=12adk(k+1)1a2kp2=1a2k2pdp=dk=12a2pdp(1a2p2+1)p=1adp(1a2+1)p2formula[dxa2x2=12aln(a+xax)]=1a×12(1a2+1)×ln(1a2+1+p1a2+1p)=121+a2ln(1a2+1+1a2k1a2+11a2k)=121+a2ln(1+a2+1a2k1+a21a2k)=121+a2ln(1+a2+1a2t21+a21a2t2)=121+a2ln(1+a2+1a2x21+a21a2x2)a=121+a2[{ln(1+a2+101+a210)}ln(1+a2+01+a20)}]=11+a2ln(1+a2+11+a21)
Commented by Abdo msup. last updated on 17/Dec/18
thank you sir tanmay.
thankyousirtanmay.

Leave a Reply

Your email address will not be published. Required fields are marked *