find-f-a-a-dx-1-x-2-x-2-a-2-with-a-gt-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 50423 by Abdo msup. last updated on 16/Dec/18 findf(a)=∫a+∞dx(1+x2)x2−a2witha>0 Commented by Abdo msup. last updated on 17/Dec/18 changementx=ach(t)givet=argch(xa)f(a)=∫0+∞ash(t)dt(1+a2ch2(t))ash(t)=∫0∞dt1+a21+ch(2t)2=∫0∞2dt2+a2+a2e2t+e−2t2=∫0∞4dt4+2a2+a2e2t+a2e−2t=e2t=u∫1∞44+2a2+a2u+a2u−1du2u=2∫1∞du(4+2a2)u+a2u2+a2=∫1∞2dua2u2+(4+2a2)u+a2Δ′=(2+a2)2−a4=4+4a2>0⇒u1=−2−a2+21+a2a2u2=−2−a2−21+a2a2F(u)=2(u−u1)(u−u2)=2u1−u2(1u−u1−1u−u2)=a221+a2(1u−u1−1u−u2)⇒∫1∞F(u)du=a221+a2[ln∣u−u1u−u2∣]1+∞=a221+a2ln∣1−u21−u1∣=a221+a2ln∣1−−2−a2−21+a2a21−−2−a2+21+a2a2∣=a221+a2ln∣2a2+2+21+a22a2+2−21+a2∣=a221+a2ln∣a2+1+1+a2a2+1−1+a2∣=f(a) Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18 ∫dx(1+x2)x2−a2t=1xx=1tdx=−1t2dt∫−dtt2(1+1t2)1t2−a2∫−tdt(t2+1)1−a2t2=−1a∫tdt(t2+1)1a2−t2k=t2dk=2tdt=−12a∫dk(k+1)1a2−kp2=1a2−k2pdp=−dk=−12a∫−2pdp(1a2−p2+1)p=1a∫dp(1a2+1)−p2formula[∫dxa2−x2=12aln(a+xa−x)]=1a×12(1a2+1)×ln(1a2+1+p1a2+1−p)=121+a2ln(1a2+1+1a2−k1a2+1−1a2−k)=121+a2ln(1+a2+1−a2k1+a2−1−a2k)=121+a2ln(1+a2+1−a2t21+a2−1−a2t2)=121+a2∣ln(1+a2+1−a2x21+a2−1−a2x2)∣a∞=121+a2[{ln(1+a2+1−01+a2−1−0)}−ln(1+a2+01+a2−0)}]=11+a2ln(1+a2+11+a2−1) Commented by Abdo msup. last updated on 17/Dec/18 thankyousirtanmay. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-1-ln-x-x-1-x-3-2-dx-Next Next post: Question-115961 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.