Question Number 51991 by maxmathsup by imad last updated on 01/Jan/19
$${find}\:{f}\left({a}\right)\:=\int\:\:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}+{ax}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{ax}^{\mathrm{2}} }}\:\:{with}\:{a}>\mathrm{0} \\ $$
Commented by Abdo msup. last updated on 05/Jan/19
$${changement}\:{x}\sqrt{{a}}={t}\:{give} \\ $$$${f}\left({a}\right)=\int\:\:\:\:\:\:\:\:\frac{{dt}}{\:\sqrt{{a}}\left(\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\right)} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{a}}}\:\int\:\:\:\:\:\frac{{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:\Rightarrow\sqrt{{a}}{f}\left({a}\right)=\int\:\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }−\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{2}{t}^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}^{\mathrm{2}} }\:{dt}−\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{{t}^{\mathrm{2}} }\:{dt}\:\:{but}\:{by}\:{parts} \\ $$$$\int\:\:\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}^{\mathrm{2}} }{dt}\:=\frac{−\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}}\:−\int\:−\frac{\mathrm{1}}{{t}}\:\:\frac{\mathrm{2}{t}}{\mathrm{2}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{dt} \\ $$$$=−\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}}\:+{ln}\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)\:+{c}_{\mathrm{1}} \:{also}\:{by}\:{psrts} \\ $$$$\int\:\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{{t}^{\mathrm{2}} }\:{dt}\:=−\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{{t}}\:−\int\:\:−\frac{\mathrm{1}}{{t}}\:\frac{−\mathrm{2}{t}}{\mathrm{2}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:{dt} \\ $$$$=−\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{{t}}\:−{arcsint}\:\:+{c}_{\mathrm{2}} \:\Rightarrow \\ $$$${f}\left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{a}}}\left\{\:−\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}}\:+{ln}\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)+\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{{t}}\right. \\ $$$$\left.+{arcsint}\:\right\}\:+{C}\:. \\ $$$$ \\ $$